

The Brain Scaffold Builder

Contents:

	Installation Guide
	Installing for NEURON

	Installing NEST

	Getting Started
	First steps

	First script

	Network compilation

	Network simulation

	Using Cell Types

	Command Line Interface
	Scaffold shell

	List of command line commands

	Guides
	Layers

	Cell types

	Connection types

	Output

	Output Formats

	Simulations

	List of placement strategies

	List of connection strategies

	Placement sets

	Plotting Tools

	Blender

	Cell Placement
	Configuration

	Placement Strategy

	Labels

	Morphologies
	Using morphologies

	Cell Connectivity
	Configuration

	Connecting cells

	Simulating networks with the BSB
	Conceptual overview

	Arbor

	NEST

	NEURON

Indices and tables

References

	Configuration reference
	Root attributes

	Output attributes

	Network architecture attributes

	Layer attributes

	Cell Type Attributes

	Placement Attributes

	Connectivity Attributes

	Morphology attributes

	Plotting attributes

	Reference Guide
	Command line interface module

	Configuration module

	Connectivity module

	Exceptions module

	Functions module

	Helpers module

	Models module

	Morphologies module

	Networks module

	Output module

	Placement module

	Plotting module

	Postprocessing module

	Scaffold class

	Simulation module

	Simulators

	Trees module

	Voxels module

	Index

	Module Index

Developer Guides

Developer Guides:

	Developer Installation

	Documentation
	Conventions

Installation Guide

The scaffold framework can be installed using Pip for Python 3

pip install bsb

You can verify that the installation works with

bsb make-config
bsb -v=3 compile -x=50 -z=50 -p

This should generate a template config and an HDF5 file in your current directory and open
a plot of the generated network, it should contain a column of base_type cells. If no
errors occur you are ready to get started.

Installing for NEURON

The BSB’s installation will install NEURON from PyPI if no NEURON installation is
detected by pip. This means that any custom installations that rely on PYTHONPATH
to be detected at runtime but aren’t registered as an installed package to pip will be
overwritten. Because it is quite common for NEURON to be incorrectly installed from pip’s
point of view, you have to explicitly ask the BSB installation to install it:

pip install bsb[neuron]

After installation of the dependencies you will have to describe your cell models using
Arborize’s [https://arborize.readthedocs.io] NeuronModel template and import your
Arborize cell models module into a MorphologyRepository:

$ bsb
> open mr morphologies.hdf5 --create
<repo 'morphologies.hdf5'> arborize my_models
numprocs=1
Importing MyCell1
Importing MyCell2
...
<repo 'morphologies.hdf5'> exit

This should allow you to use morphologies.hdf5 and the morphologies contained within
as the morphology_repository of the output node in your config:

{
 "name": "Example config",
 "output": {
 "format": "bsb.output.HDF5Formatter",
 "file": "my_network.hdf5",
 "morphology_repository": "morphologies.hdf5"
 }
}

Installing NEST

The BSB currently runs a fork of NEST 2.18, to install it, follow the instructions below.
The instructions assume you are using pyenv [https://github.com/pyenv/pyenv-installer]
for virtual environments.

sudo apt-get update && apt-get install -y openmpi-bin libopenmpi-dev
git clone git@github.com:dbbs-lab/nest-simulator
cd nest-simulator
mkdir build && cd build
export PYTHON_CONFIGURE_OPTS="--enable-shared"
Any Python 3.8+ version built with `--enable-shared` will do
PYVER_M=3.9
PYVER=$PYVER_M.0
VENV=nest-218
pyenv install $PYVER
pyenv virtualenv $PYVER $VENV
pyenv local nest-218
cmake .. \
 -DCMAKE_INSTALL_PREFIX=$(pyenv root)/versions/$VENV \
 -Dwith-mpi=ON \
 -Dwith-python=3 \
 -DPYTHON_LIBRARY=$(pyenv root)/versions/$PYVER/lib/libpython$PYVER_M.so \
 -DPYTHON_INCLUDE_DIR=$(pyenv root)/versions/$PYVER/include/python$PYVER_M
make install -j8

Confirm your installation with:

python -c "import nest; nest.test()"

Note

There might be a few failed tests related to NEST_DATA_PATH but this is OK.

Getting Started

First steps

The scaffold provides a simple command line interface (CLI) to compile network
architectures and run simulations.

To start, let’s create ourselves a project directory and a template configuration:

mkdir my_brain
cd my_brain
bsb make-config

See Command Line Interface for a full list of CLI commands.

The make-config command makes a template configuration file:

{
 "name": "Empty template",
 "network_architecture": {
 "simulation_volume_x": 400.0,
 "simulation_volume_z": 400.0
 },
 "output": {
 "format": "bsb.output.HDF5Formatter"
 },
 "layers": {
 "base_layer": {
 "thickness": 100
 }
 },
 "cell_types": {
 "base_type": {
 "placement": {
 "class": "bsb.placement.ParticlePlacement",
 "layer": "base_layer",
 "soma_radius": 2.5,
 "density": 3.9e-4
 },
 "morphology": {
 "class": "bsb.morphologies.NoGeometry"
 },
 "plotting": {
 "display_label": "Template cell",
 "color": "#E62314",
 "opacity": 0.5
 }
 }
 },
 "after_placement": {

 },
 "connection_types": {

 },
 "after_connectivity": {

 },
 "simulations": {

 }
}

The configuration is laid out to be as self explanatory as possible. For a full
walkthrough of all parts see the Configuration reference.

To convert the abstract description in the configuration file into a concrete
network file with cell positions and connections run the compile command:

bsb -c network_configuration.json compile -p

Note

You can leave off the -c (or --config) flag in this case as
network_configuration.json is the default config that bsb compile will
look for. The -p (or --plot) flag will plot your network afterwards

First script

The BSB is also a library that can be imported into Python scripts. You can load
configurations and adapt the loaded object before constructing a network with it to
programmatically alter the network structure.

Let’s go over an example first script that creates 5 networks with different
densities of base_type.

To use the scaffold in your script you should import the bsb.core.Scaffold
and construct a new instance by passing it a bsb.config.ScaffoldConfig.
The only provided configuration is the bsb.config.JSONConfig.
To load a configuration file, construct a JSONConfig object providing the file
keyword argument with a path to the configuration file:

from bsb.core import Scaffold
from bsb.config import JSONConfig
from bsb.reporting import set_verbosity

config = JSONConfig(file="network_configuration.json")
set_verbosity(3) # This way we can follow what's going on.
scaffold = Scaffold(config)

Note

The verbosity is 1 by default, which only displays errors. You could also add a
verbosity attribute to the root node of the network_configuration.json file to
set the verbosity.

Let’s find the base_type cell configuration:

base_type = scaffold.get_cell_type("base_type")

The next step is to adapt the base_type cell density each iteration. The location
of the attributes on the Python objects mostly corresponds to their location in
the configuration file. This means that:

"base_type": {
 "placement": {
 "density": 3.9e-4,
 ...
 },
 ...
}

will be stored in the Python CellType object under
base_type.placement.density:

max_density = base_type.placement.density
for i in range(5):
 base_type.placement.density = i * 20 / 100 * max_density
 scaffold.compile_network()

 scaffold.plot_network_cache()

 scaffold.reset_network_cache()

Warning

If you don’t use reset_network_cache() between compile_network() calls,
the new cells will just be appended to the previous ones. This might lead to
confusing results.

Full code example

from bsb.core import Scaffold
from bsb.config import JSONConfig
from bsb.reporting import set_verbosity

config = JSONConfig(file="network_configuration.json")
set_verbosity(3) # This way we can follow what's going on.
scaffold = Scaffold(config)

base_type = scaffold.get_cell_type("base_type_cell")
max_density = base_type.placement.density

for i in range(5):
 base_type.placement.density = i * 20 / 100 * max_density
 scaffold.compile_network()

 scaffold.plot_network_cache()

 scaffold.reset_network_cache()

Network compilation

compilation is the process of creating an output containing the constructed
network with cells placed according to the specified placement strategies and
connected to each other according to the specified connection strategies:

from bsb.core import Scaffold
from bsb.config import JSONConfig
 import os

config = JSONConfig(file="network_configuration.json")

The configuration provided in the file can be overwritten here.
For example:
config.cell_types["some_cell"].placement.some_parameter = 50
config.cell_types["some_cell"].plotting.color = os.getenv("ENV_PLOTTING_COLOR", "black")

scaffold = Scaffold(config)
scaffold.compile_network()

The configuration object can be freely modified before compilation, although
values that depend on eachother - i.e. layers in a stack - will not update each
other.

Network simulation

Simulations can be executed from configuration in a managed way using:

scaffold.run_simulation(name)

This will load the simulation configuration associated with name and create
an adapter for the simulator. An adapter translates the scaffold configuration
into commands for the simulator. In this way scaffold adapters are able to
prepare simulations in external simulators such as NEST or NEURON for you. After
the simulator is prepared the simulation is ran.

For more control over the interface with the simulator, or finer control of
the configuration, the process can be split into parts. The adapter to the
interface of the simulator can be ejected and its configuration can be
modified:

adapter = scaffold.create_adapter(name)
adapter.devices["input_stimulation"].parameters["rate"] = 40

You can then use this adapter to prepare the simulator for the configured
simulation:

simulator = adapter.prepare()

After preparation the simulator is primed, but can still be modified directly
accessing the interface of the simulator itself. For example to create 5 extra
cells in a NEST simulation on top of the prepared configuration one could:

cells = simulator.Create("iaf_cond_alpha", 5)
print(cells)

You’ll notice that the IDs of those cells won’t start at 1 as would be the case
for an empty simulation, because the prepare statement has already created
cells in the simulator.

After custom interfacing with the simulator, the adapter can be used to run the
simulation:

adapter.simulate()

Full code example

adapter = scaffold.create_adapter(name)
adapter.devices["input_stimulation"].parameters["rate"] = 40
simulator = adapter.prepare()
cells = simulator.Create("iaf_cond_alpha", 5)
print(cells)
adapter.simulate()

Using Cell Types

Cell types are obtained by name using bsb.get_cell_type(name). And the
associated cells either currently in the network cache or in persistent storage
can be fetched with bsb.get_cells_by_type(name). The columns of such
a set are the scaffold id of the cell, followed by the type id and the xyz
position.

A collection of all cell types can be retrieved with bsb.get_cell_types():

for cell_type in scaffold.get_cell_types():
 cells = scaffold.get_cells_by_type(cell_type.name)
 for cell in cells:
 print("Cell id {} of type {} at position {}.".format(cell[0], cell[1], cell[2:5]))

Command Line Interface

There are 2 entry points in the command line interface:

	A command: Can be written in a command line prompt such as the Terminal on
Linux or CMD on Windows.

	The shell: Can be opened by giving typing bsb into a command line
prompt.

Scaffold shell

The scaffold shell is an interactive environment where commands can be given.
Unlike with the command line your state is maintained in between commands.

Opening the shell

Open your favorite command line prompt and if the scaffold package is succesfully
installed the bsb command should be available.

You can close the shell by typing exit.

The base state

After opening the shell it will be in the base (default) state. In this state
you have access to several commands like opening morphology repositories or hdf5
files.

List of base commands

	open mr <filename>: Open a morphology repository. See List of mr commands

	open hdf5 <filename>: Open an HDF5 file. See List of hdf5 commands:

The morphology repository state

In this state you can modify the morphology repository.
After you’ve opened a repository the shell will display a prefix:

repo <filename>:

List of mr commands

	list all: Show a list of all morphologies available in the repository.

	list voxelized: Show a list of all morphologies with voxel cloud
information available.

	import repo <filename>: Import all morphologies from another repository.
-f/--overwrite: Overwrite existing morphologies.

	import swc <file> <name>: Import an SWC morphology and store it under the
given name.

	arborize <class> <name>: Import an Arborize model.

	remove <name>: Remove a morphology from the repository.

	voxelize <name> [<n=130>]: Generate a voxel cloud of n (optional,
default=130) voxels for the morphology.

	plot <name>: Plot the morphology.

	close: Exit the mr state.

The HDF5 state

In this state you can view the structure of HDF5 files.

List of hdf5 commands:

	view: Create a hierarchical print of the HDF5 file, groups, datasets, and
attributes.

	plot: Display a plot of the HDF5 network.

List of command line commands

Note

Parameters included between square brackets are optional, the brackets need
not be included in the actual command.

compile

bsb [-v=1 -c=mouse_cerebellum] compile [-p -o]

Compiles a network architecture: Places cells in a simulated volume and connects
them to eachother. All this information is then stored in a single HDF5 file.

	-v, --verbosity: Sets the verbosity of the scaffold. The higher the
verbosity the more console output will be generated.

	-c, --configuration: Sets the configuration file that will be used.

	-p: Plot the created network.

	-o=<file>, --output=<file>: Output the result to a specific file.

simulate

bsb [-v=1] simulate <name> [-rc=<config>] --hdf5=<file>

Run a simulation from a compiled network architecture.

	-v, --verbosity: Sets the verbosity of the scaffold. The higher the
verbosity the more console output will be generated.

	-c, --configuration: Sets the configuration file that will be used.

	name: Name of the simulation.

	--hdf5: Path to the compiled network architecture.

	-rc, --reconfigure: The path to a new configuration file for the HDF5
file.

run

bsb [-v=1 -c=mouse_cerebellum] run <name> [-p]

Run a simulation creating a new network architecture.

	-v, --verbosity: Sets the verbosity of the scaffold. The higher the
verbosity the more console output will be generated.

	-c, --configuration: Sets the configuration file that will be used.

	-p: Plot the created network.

plot

bsb plot <file>

Create a plot of the network in an HDF5 file.

Guides

	Layers

	Cell types

	Connection types

	Output

	Output Formats

	Simulations

	List of placement strategies

	List of connection strategies

	Placement sets

	Plotting Tools

	Blender

Layers

Layers are partitions of the simulation volume that most placement strategies use as a
reference to place cells in.

Configuration

In the root node of the configuration file the layers dictionary configures all the
layers. The key in the dictionary will become the layer name. A layer configuration
requires only to describe its origin and dimensions. In its simplest form this can be
achieved by providing a position and thickness. In that case the layer will scale
along with the simulation volume X and Z.

Basic usage

Configure the following attributes:

	position: XYZ coordinates of the bottom-left corner, unless xz_center is set.

	thickness: Height of the layer

Example

{
 "layer": {
 "granular_layer": {
 "position": [0.0, 600.0, 0.0],
 "thickness": 150.0
 }
 }
}

Stacking layers

Placing layers manually can be sufficient, but when you have layers with dynamic sizes it
can be usefull to automatically rearrange other layers. To do so you can group layers
together in a vertical stack. To stack layers together you need to configure
stack dictionaries in both with the same stack_id and different
position_in_stack. Each stack requires exactly one definition of its
position, which can be supplied in any of the layers it consists of:

"layers": {
 "layer_a": {
 "thickness": 150.0,
 "stack": {
 "stack_id": 0,
 "position_in_stack": 0,
 "position": [10, 0, 100]
 }
 },
 "layer_b": {
 "thickness": 150.0,
 "stack": {
 "stack_id": 0,
 "position_in_stack": 1
 }
 }
}

This will result in a stack of Layer A and B with Layer B on top. Both layers will
have an X and Z origin of 10 and 100, but the Y of Layer B will be raised from
0 with the thickness of Layer A, to 150, ending up on top of it. Both Layer A and
B will have X and Z dimensions equal to the simulation volume X and Z. This can be altered
by specifying xz_scale.

Scaling layers

Layers by default scale with the simulation volume X and Z. You can change the default
one-to-one ratio by specifying xz_scale:

"layer_a": {
 "xz_scale": 0.5
}

When the XZ size is [100, 100] layer A will be [50, 50] instead. You can also use
a list to scale different on the X than on the Z axis:

"layer_a": {
 "xz_scale": [0.5, 2.0]
}

Volumetric scaling

Layers can also scale relative to the volume of other layers. To do so set a
volume_scale ratio which will determine how many times larger the volume of
this layer will be than its reference layers. The reference layers can be specified with
scale_from_layers. The shape of the layer will be cubic, unless the
volume_dimension_ratio is specified:

"some_layer": {
 "volume_scale": 10.0,
 "scale_from_layers": ["other_layer"],
 # Cube (default):
 "volume_dimension_ratio": [1., 1., 1.],
 # High pole:
 "volume_dimension_ratio": [1., 20., 1.], # Becomes [0.05, 1., 0.05]
 # Flat bed:
 "volume_dimension_ratio": [20., 1., 20.]
}

Note

The volume_dimension_ratio is normalized to the Y value.

Scripting

The value of layers in scripting is usually limited because they only contain spatial
information.

Retrieving layers

Layers can be retrieved from a ScaffoldConfig:

from bsb.config import JSONConfig

config = JSONConfig("mouse_cerebellum")
layer = config.get_layer(name="granular_layer")

A Scaffold also stores its configuration:

layer = scaffold.configuration.get_layer(name="granular_layer")

All Layered placement strategies store a reference to their layer
instance:

placement = scaffold.get_cell_type("granule_cell").placement
layer_name = placement.layer
layer = placement.layer_instance

Note

The instance of a placement strategy’s layer is added only after initialisation of the
placement strategy, which occurs only after the scaffold is bootstrapped (so after
scaffold = Scaffold(config))

Cell types

Cell types are the main component of the scaffold. They will be placed into the
simulation volume and connected to eachother.

Configuration

In the root node of the configuration file the cell_types dictionary configures all
the cell types. The key in the dictionary will become the cell type name. Each entry
should contain a correct configuration for a placement.PlacementStrategy and
morphologies.Morphology under the placement and morphology attributes
respectively.

Optionally a plotting dictionary can be provided when the scaffold’s plotting
functions are used.

Basic usage

	Configure the following attributes in placement:

	class: the importable name of the placement strategy class. 3 built-in
implementations of the placement strategy are available:
ParticlePlacement,
ParallelArrayPlacement and
Satellite

	layer: The topological layer in which this cell type appears.

	soma_radius: Radius of the cell soma in µm.

	density: Cell density, see Cell count for more possibilities.

2. Select one of the morphologies that suits your cell type and configure its required
attributes. Inside of the morphology attribute, a detailed_morphologies attribute
can be specified to select detailed morphologies from the morphology repository.

3. The cell type will now be placed whenever the scaffold is compiled, but you’ll need to
configure connection types to connect it to other cells.

Example

{
 "name": "My Test configuration",
 "output": {
 "format": "bsb.output.HDF5Formatter"
 },
 "network_architecture": {
 "simulation_volume_x": 400.0,
 "simulation_volume_z": 400.0
 },
 "layers": {
 "granular_layer": {
 "origin": [0.0, 0.0, 0.0],
 "thickness": 150
 }
 },
 "cell_types": {
 "granule_cell": {
 "placement": {
 "class": "bsb.placement.ParticlePlacement",
 "layer": "granular_layer",
 "soma_radius": 2.5,
 "density": 3.9e-3
 },
 "morphology": {
 "class": "bsb.morphologies.GranuleCellGeometry",
 "pf_height": 180,
 "pf_height_sd": 20,
 "pf_length": 3000,
 "pf_radius": 0.5,
 "dendrite_length": 40,
 "detailed_morphologies": ["GranuleCell"]
 },
 "plotting": {
 "display_name": "granule cell",
 "color": "#E62214"
 }
 }
 },
 "connection_types": {},
 "simulations": {}
}

Use bsb -c=my-config.json compile to test your configuration file.

Connection types

Connection types connect cell types together after they’ve been placed into the simulation
volume. They are defined in the configuration under connection_types:

{
 "connection_types": {
 "cell_A_to_cell_B": {
 "class": "bsb.connectivity.VoxelIntersection",
 "from_cell_types": [
 {
 "type": "cell_A",
 "compartments": ["axon"]
 }
],
 "to_cell_types": [
 {
 "type": "cell_B",
 "compartments": ["dendrites", "soma"]
 }
]
 }
 }
}

The class specifies which ConnectionStrategy to load for this conenction
type. The from_cell_types and to_cell_types specify which pre- and
postsynaptic cell types to use respectively. The cell type definitions in those lists have
to contain a type that links to an existing cell type and can optionally
contain hints to which compartments of the morphology to use.

Creating your own

In order to create your own connection type, create an importable module (refer to the
Python documentation [https://docs.python.org/3/tutorial/modules.html]) with inside
a class inheriting from connectivity.ConnectionStrategy. Let’s start by
deconstructing a full code example that connects cells that are near each other between
a min and max distance:

from bsb.connectivity import ConnectionStrategy
from bsb.exceptions import ConfigurationError
import scipy.spatial.distance as dist

class ConnectBetween(ConnectionStrategy):
 # Casts given configuration values to a certain type
 casts = {
 "min": float,
 "max": float,
 }
 # Default values for the configuration attributes
 defaults = {
 "min": 0.,
 }
 # Configuration attributes that the user must give or an error is thrown.
 required = ["max"]

 # The function to check whether the given values are all correct
 def validate(self):
 if self.max < self.min:
 raise ConfigurationError("Max distance should be larger than min distance.")

 # The function to determine which cell pairs should be connected
 def connect(self):
 for ft in self.from_cell_types:
 ps_from = self.scaffold.get_placement_set(ft)
 fpos = ps_from.positions
 for tt in self.to_cell_types:
 ps_to = self.scaffold.get_placement_set(tt)
 tpos = ps_to.positions
 pairw_dist = dist.cdist(fpos, tpos)
 pairs = ((pairw_dist <= max) & (pairw_dist >= min)).nonzero()
 # More code to convert `pairs` into a Nx2 matrix of pre & post synaptic pair IDs
 # ...
 self.scaffold.connect_cells(f"{ft.name}_to_{tt.name}", pairs)

An example using this strategy, assuming it is importable as the my_module module:

{
 "connection_types": {
 "cell_A_to_cell_B": {
 "class": "my_module.ConnectBetween",
 "min": 10,
 "max": 15.5,
 "from_cell_types": [
 {
 "type": "cell_A"
 }
],
 "to_cell_types": [
 {
 "type": "cell_B"
 }
]
 }
 }
}

Configuration attributes

All keys present on the connection type in the configuration will be available on the
connection strategy under self.<key> (e.g. min will become self.min).
Additionally the scaffold object is available under self.scaffold.

Configuration attributes will by default have the data type they have in JSON, which can
be any of int, float, str, list or dict. This data type can be
overridden by using the class attribute casts. Any key present in this dictionary
will use the value as a conversion function if the configuration attribute is encountered.

In this example both min and max will be converted to float.
You can also provide your own functions or lambdas as long as they take the configuration
value as only argument:

casts = {"cake_or_pie": lambda x: "pie" if x < 10 else "cake"}

You can provide default values for configuration attributes giving the defaults class
variable dictionary. You can also specify that certain attributes are required to be
provided. If they occur in the defaults dictionary the default value will be used
when no value is provided in the configuration.

Validation handling

The given configuration attributes can be further validated using the validate method.
From inside the validate method a ConfigurationError can be thrown when the user
given values aren’t valid. This method is required, if no validation is required a noop
function should be given:

def validate(self):
 pass

Connection handling

Inside of the connect function the from and to cell types will be available. You can
access their placement data using self.scaffold.get_placement_set(type). The
properties of a PlacementSet are expensive IO operations, cache them:

WRONG! Will read the data from file 200 times
for i in range(100):
 ps1.positions - ps2.positions

Correct! Will read the data from file only 2 times
pos1 = ps1.positions
pos2 = ps2.Positions
for i in range(100):
 pos1 - pos2

Finally you should call self.scaffold.connect_cells(tag, matrix) to connect the cells.
The tag is free to choose, the matrix should be rows of pre to post cell ID pairs.

Connection types and labels

When defining a connection type under connection_types in the configuration file,
it is possible to select specific subpopulations inside the attributes from_cell_types and/or
to_cell_types. By including the attribute with_label in the connection_types
configuration, you can define the subpopulation label:

{
 "connection_types": {
 "cell_A_to_cell_B": {
 "class": "my_module.ConnectBetween",
 "from_cell_types": [
 {
 "type": "cell_A",
 "with_label": "cell_A_type_1"
 }
],
 "to_cell_types": [
 {
 "type": "cell_B",
 "with_label": "cell_B_type_3"
 }
]
 }
 }
}

Note

The labels used in the configuration file must correspond to the labels assigned
during cell placement.

Using more than one label

If under connection_types more than one label has been specified, it is possible to choose
whether the labels must be used serially or in a mixed way, by including a new attribute mix_labels.
For instance:

{
 "connection_types": {
 "cell_A_to_cell_B": {
 "class": "my_module.ConnectBetween",
 "from_cell_types": [
 {
 "type": "cell_A","with_label": ["cell_A_type_2","cell_A_type_1"]
 }
],
 "to_cell_types": [
 {
 "type": "cell_B","with_label": ["cell_B_type_3","cell_B_type_2"]
 }
]
 }
 }
}

Using the above configuration file, the established connections are:

	From cell_A_type_2 to cell_B_type_3

	From cell_A_type_1 to cell_B_type_2

Here there is another example of configuration setting:

{
 "connection_types": {
 "cell_A_to_cell_B": {
 "class": "my_module.ConnectBetween",
 "from_cell_types": [
 {
 "type": "cell_A","with_label": ["cell_A_type_2","cell_A_type_1"]
 }
],
 "to_cell_types": [
 {
 "type": "cell_B","with_label": ["cell_B_type_3","cell_B_type_2"]
 }
],
 "mix_labels": true,
 }
 }
}

In this case, thanks to the mix_labels attribute,the established connections are:

	From cell_A_type_2 to cell_B_type_3

	From cell_A_type_2 to cell_B_type_2

	From cell_A_type_1 to cell_B_type_3

	From cell_A_type_1 to cell_B_type_2

Output

Output Formats

Nearly-continuous list

This format is used to store lists that are almost always just a sequence of continuous
numbers. It will always contain pairs that describe a continuous chain of numbers as a
start and length.

For example this sequence:

[15, 3, 30, 4]

Describes 3 numbers starting from 15 and 4 numbers starting from 30:

[15, 16, 17, 30, 31, 32, 33]

See helpers.continuity_list() for the implementation.

Note

The scaffold generates continuous IDs, but this assumption does not hold true in many edge
cases like manually placing cells, using custom placement strategies or after
postprocessing the placed cells.

Simulations

After building the scaffold models, simulations can be run using NEST [https://www.nest-simulator.org/] or NEURON.

Simulations can be configured in the simulations dictionary of the root node of the
configuration file, specifying each simulation with its name, e.g. “first_simulation”, “second_simulation”:

{
 "simulations": {
 "first_simulation": {

 },
 "second_simulation": {

 }
 }
}

NEST

NEST is mainly used for simulations of Spiking Neural Networks, with point neuron models.

Configuration

NEST simulations in the scaffold can be configured setting the attribute simulator to nest.
The basic NEST simulation properties can be set through the attributes:

	default_neuron_model: default model used for all cell_models, unless differently indicated in the neuron_model attribute of a specific cell model.

	default_synapse_model: default model used for all connection_models (e.g. static_synapse), unless differently indicated in the synapse_model attribute of a specific connection model.

	duration: simulation duration in [ms].

	modules: list of NEST extension modules to be installed.

Then, the dictionaries cell_models, connection_models, devices, entities specify the properties of each element of the simulation.

{
 "simulations": {
 "first_simulation": {
 "simulator": "nest",
 "default_neuron_model": "iaf_cond_alpha",
 "default_synapse_model": "static_synapse",
 "duration": 1000,
 "modules": ["cerebmodule"],

 "cell_models": {

 },
 "connection_models": {

 },
 "devices": {

 },
 "entities": {

 }

 },
 "second_simulation": {

 }
 }
}

Cells

In the cell_models attribute, it is possible to specify simulation-specific properties for each cell type:

	cell_model: NEST neuron model, if not using the default_neuron_model. Currently supported models are iaf_cond_alpha and eglif_cond_alpha_multisyn. Other available models can be found in the NEST documentation [https://nest-simulator.readthedocs.io/en/latest/models/neurons.html]

	parameters: neuron model parameters that are common to the NEST neuron models that could be used, including:

	t_ref: refractory period duration [ms]

	C_m: membrane capacitance [pF]

	V_th: threshold potential [mV]

	V_reset: reset potential [mV]

	E_L: leakage potential [mV]

Then, neuron model specific parameters can be indicated in the attributes corresponding to the model names:

	iaf_cond_alpha:

	I_e: endogenous current [pA]

	tau_syn_ex: time constant of excitatory synaptic inputs [ms]

	tau_syn_in: time constant of inhibitory synaptic inputs [ms]

	g_L: leaky conductance [nS]

	eglif_cond_alpha_multisyn:

	Vmin: minimum membrane potential [mV]

	Vinit: initial membrane potential [mV]

	lambda_0: escape rate parameter

	tau_V: escape rate parameter

	tau_m: membrane time constant [ms]

	I_e: endogenous current [pA]

	kadap: adaptive current coupling constant

	k1: spike-triggered current decay

	k2: adaptive current decay

	A1: spike-triggered current update [pA]

	A2: adaptive current update [pA]

	tau_syn1, tau_syn2, tau_syn3: time constants of synaptic inputs at the 3 receptors [ms]

	E_rev1, E_rev2, E_rev3: reversal potential for the 3 synaptic receptors (usually set to 0mV for excitatory and -80mV for inhibitory synapses) [mV]

	receptors: dictionary specifying the receptor number for each input cell to the current neuron

Example

Configuration example for a cerebellar Golgi cell. In the eglif_cond_alpha_multisyn neuron model, the 3 receptors are associated to synapses from glomeruli, Golgi cells and Granule cells, respectively.

{
 "cell_models": {
 "golgi_cell": {
 "parameters": {
 "t_ref": 2.0,
 "C_m": 145.0,
 "V_th": -55.0,
 "V_reset": -75.0,
 "E_L": -62.0
 },
 "iaf_cond_alpha": {
 "I_e": 36.75,
 "tau_syn_ex": 0.23,
 "tau_syn_in": 10.0,
 "g_L": 3.3
 },
 "eglif_cond_alpha_multisyn": {
 "Vmin": -150.0,
 "Vinit": -62.0,
 "lambda_0": 1.0,
 "tau_V":0.4,
 "tau_m": 44.0,
 "I_e": 16.214,
 "kadap": 0.217,
 "k1": 0.031,
 "k2": 0.023,
 "A1": 259.988,
 "A2":178.01,
 "tau_syn1":0.23,
 "tau_syn2": 10.0,
 "tau_syn3": 0.5,
 "E_rev1": 0.0,
 "E_rev2": -80.0,
 "E_rev3": 0.0,
 "receptors": {
 "glomerulus": 1,
 "golgi_cell": 2,
 "granule_cell": 3
 }
 }
 }
 }
}

Connections

Simulations with plasticity

The default synapse model for connection models is usually set to static_synapse.

For plastic synapses, it is possible to choose between:

	homosynaptic plasticity models (e.g. stdp_synapse) where weight changes depend on pre- and postsynaptic spike times

	heterosynaptic plasticity models (e.g. stdp_synapse_sinexp), where spikes of an external teaching population trigger the weight change. In this case, a device called “volume transmitter” is created for each postsynaptic neuron, collecting the spikes from the teaching neurons.

For a full set of available synapse models, see the NEST documentation [https://nest-simulator.readthedocs.io/en/latest/models/synapses.html]

For the plastic connections, specify the attributes as follows:

	plastic: set to true.

	hetero: set to true if using an heterosynaptic plasticity model.

	teaching: Connection model name of the teaching connection for heterosynaptic
plasticity models.

	synapse_model: the name of the NEST synapse model to be used. By default, it is the
model specified in the default_synapse_model attribute of the current simulation.

	synapse: specify the parameters for each one of the synapse models that could be
used for that connection.

Note

If the synapse_model attribute is not specified, the default_synapse_model will
be used (static). Using synapse models without plasticity - such as static -
while setting the plastic attribute to true will lead to errors.

Example

{
 "connection_models": {
 "parallel_fiber_to_purkinje": {
 "plastic": true,
 "hetero": true,
 "teaching": "io_to_purkinje",
 "synapse_model": "stdp_synapse_sinexp",
 "connection": {
 "weight": 0.007,
 "delay": 5.0
 },
 "synapse": {
 "static_synapse": {},
 "stdp_synapse_sinexp": {
 "A_minus": 0.5,
 "A_plus": 0.05,
 "Wmin": 0.0,
 "Wmax": 100.0
 }
 }
 },

 "purkinje_to_dcn": {
 "plastic": true,
 "synapse_model": "stdp_synapse",
 "connection": {
 "weight":-0.4,
 "delay": 4.0
 },
 "synapse": {
 "static_synapse": {},
 "stdp_synapse": {
 "tau_plus":30.0,
 "alpha": 0.5,
 "lambda": 0.1,
 "mu_plus": 0.0,
 "mu_minus": 0.0,
 "Wmax": 100.0
 }
 }
 }
 }
}

Devices

Entities

List of placement strategies

PlacementStrategy

Configuration

	layer: The layer in which to place the cells.

	soma_radius: The radius in µm of the cell body.

	count: Determines cell count absolutely.

	density: Determines cell count by multiplying it by the placement volume.

	planar_density: Determines cell count by multiplying it by the placement surface.

	placement_relative_to: The cell type to relate this placement count to.

	density_ratio: A ratio that can be specified along with placement_relative_to
to multiply another cell type’s density with.

	placement_count_ratio: A ratio that can be specified along with
placement_relative_to to multiply another cell type’s placement count with.

ParallelArrayPlacement

Class: placement.ParallelArrayPlacement

FixedPositions

Class: placement.FixedPositions

This class places the cells in fixed positions specified in the attribute positions.

Configuration

	positions: a list of 3D points where the neurons should be placed. For example:

{
 "cell_types": {
 "golgi_cell": {
 "placement": {
 "class": "bsb.placement.FixedPositions",
 "layer": "granular_layer",
 "count": 1,
 "positions": [[40.0,0.0,-50.0]]
 }
 },
 }
}

List of connection strategies

Connection strategies starting whose name start with Connectome are made for a
specific connection between 2 cell types, those that do not can be used for connections
between any cell type.

Shared configuration attributes

	class: A string that specifies which connection strategy to apply to the connection
type.

	from_cell_types: An array of objects with a type key indicating presynaptic
cell types and optionally a compartments key for an array of compartment types:

"from_cell_types": [
 {"type": "basket_cell", "compartments": ["axon"]},
 {"type": "stellate_cell", "compartments": ["axon"]}
]

	to_cell_types: Same as from_cell_types but for the postsynaptic cell type.

VoxelIntersection

This strategy voxelizes morphologies into collections of cubes, thereby reducing the
spatial specificity of the provided traced morphologies by grouping multiple compartments
into larger cubic voxels. Intersections are found not between the seperate compartments
but between the voxels and random compartments of matching voxels are connected to eachother.
This means that the connections that are made are less specific to the exact morphology
and can be very useful when only 1 or a few morphologies are available to represent each
cell type.

	affinity: A fraction between 1 and 0 which indicates the tendency of cells to form
connections with other cells with whom their voxels intersect. This can be used to
downregulate the amount of cells that any cell connects with.

	contacts: A number or distribution determining the amount of synaptic contacts one
cell will form on another after they have selected eachother as connection partners.

Note

The affinity only affects the number of cells that are contacted, not the number of
synaptic contacts formed with each cell.

FiberIntersection

This strategy is a special case of VoxelIntersection that can be applied to morphologies
with long straight compartments that would yield incorrect results when approximated with
cubic voxels like in VoxelIntersection (e.g. Ascending Axons or Parallel Fibers in Granule
Cells). The fiber, organized into hierarchical branches, is split into segments, based on
original compartments length and configured resolution. Then, each branch is voxelized
into parallelepipeds: each one is built as the minimal volume with sides parallel to the
main reference frame axes, surrounding each segment. Intersections with postsynaptic
voxelized morphologies are then obtained applying the same method as in
VoxelIntersection.

	resolution: the maximum length [um] of a fiber segment to be used in the fiber
voxelization. If the resolution is lower than a compartment length, the compartment is
interpolated into smaller segments, to achieve the desired resolution. This property
impacts on voxelization of fibers not parallel to the main reference frame axes. Default
value is 20.0 um, i.e. the length of each compartment in Granule cell Parallel fibers.

	affinity: A fraction between 1 and 0 which indicates the tendency of cells to form
connections with other cells with whom their voxels intersect. This can be used to
downregulate the amount of cells that any cell connects with. Default value is 1.

	to_plot: a list of cell fiber numbers (e.g. 0 for the first cell of the presynaptic
type) that will be plotted during connection creation using plot_fiber_morphology.

	transform: A set of attributes defining the transformation class for fibers that
should be rotated or bended. Specifically, the QuiverTransform allows to bend fiber
segments based on a vector field in a voxelized volume. The attributes to be set are:

	quivers: the vector field array, of shape e.g. (3, 500, 400, 200)) for
a volume with 500, 400 and 200 voxels in x, y and z directions, respectively.

	vol_res: the size [um] of voxels in the volume where the quiver field is defined.
Default value is 25.0, i.e. the voxel size in the Allen Brain Atlas.

	vol_start: the origin of the quiver field volume in the reconstructed volume reference frame.

	shared: if the same transformation should be applied to all fibers or not

TouchingConvergenceDivergence

	divergence: Preferred amount of connections starting from 1 from_cell

	convergence: Preferred amount of connections ending on 1 to_cell

ConnectomeGlomerulusGranule

Inherits from TouchingConvergenceDivergence. No additional configuration.
Uses the dendrite length configured in the granule cell morphology.

ConnectomeGlomerulusGolgi

Inherits from TouchingConvergenceDivergence. No additional configuration.
Uses the dendrite radius configured in the Golgi cell morphology.

ConnectomeGolgiGlomerulus

Inherits from TouchingConvergenceDivergence. No additional configuration.
Uses the axon_x, axon_y, axon_z from the Golgi cell morphology
to intersect a parallelopipid Golgi axonal region with the glomeruli.

ConnectomeGranuleGolgi

Creates 2 connectivity sets by default ascending_axon_to_golgi and
parallel_fiber_to_golgi but these can be overwritten by providing tag_aa
and/or tag_pf respectively.

Calculates the distance in the XZ plane between granule cells and Golgi cells and
uses the Golgi cell morphology’s dendrite radius to decide on the intersection.

Also creates an ascending axon height for each granule cell.

	aa_convergence: Preferred amount of ascending axon synapses on 1 Golgi cell.

	pf_convergence: Preferred amount of parallel fiber synapses on 1 Golgi cell.

ConnectomeGolgiGranule

No configuration, it connects each Golgi to each granule cell that it shares a
connected glomerules with.

ConnectomeAscAxonPurkinje

Intersects the rectangular extension of the Purkinje dendritic tree with the granule
cells in the XZ plane, uses the Purkinje cell’s placement attributes extension_x
and extension_z.

	extension_x: Extension of the dendritic tree in the X plane

	extension_z: Extension of the dendritic tree in the Z plane

ConnectomePFPurkinje

No configuration. Uses the Purkinje cell’s placement attribute extension_x.
Intersects Purkinje cell dendritic tree extension along the x axis with the x position
of the granule cells, as the length of a parallel fiber far exceeds the simulation
volume.

Placement sets

PlacementSets are constructed from the
Output and can be used to retrieve lists of identifiers, positions,
rotations and additional datasets. It can also be used to construct a list of
Cells that combines that information into objects.

Note

Loading these datasets from storage is an expensive operation. Store a local reference
to the data you retrieve:

data = placement_set.identifiers # Store a local variable
cell0 = data[0] # NOT: placement_set.identifiers[0]
cell1 = data[1] # NOT: placement_set.identifiers[1]

Retrieving a PlacementSet

The output formatter of the scaffold is responsible for retrieving the dataset from the
output storage. The scaffold itself has a method get_placement_set that takes a name
of a cell type as input which will defer to the output formatter and returns a
PlacementSet. If the placement set does not exist, an DatesetNotFoundError is thrown.

ps = scaffold.get_placement_set("granule_cell")

Identifiers

The identifiers of the cells of a cell type can be retrieved using the identifiers
property. Identifiers are stored in a Nearly-continuous list.

for n, cell_id in enumerate(ps.identifiers):
 print("I am", ps.tag, "number", n, "with ID", cell_id)

Positions

The positions of the cells can be retrieved using the positions property. This dataset
is not present on entity types:

for n, cell_id, position in zip(range(len(ps)), ps.identifiers, ps.positions):
 print("I am", ps.tag, "number", n, "with ID", cell_id)
 print("My position is", position)

Rotations

Some placement strategies or external data sources might also provide rotational information for each cell.
The rotations property works analogous to the positions property.

Additional datasets

Not implemented yet.

Plotting Tools

The scaffold package provides tools to plot network topology (either point and detailed
networks) and morphologies in the bsb.plotting module.

To plot a network saved in a bsb instance, you can use:

	plot_network_cache(scaffold): to plot the network saved in the memory cache after
having compiled it

	plot_network(scaffold): to plot a network, adding the keyword argument
from_memory=False if you want to plot a network saved in a previously compiled HDF5
file. The default value is from_memory=True, which plots the version saved in your
cache (you should have compiled the network in the current session).

	plot_network_detailed(scaffold): Plots cells represented by their fully detailed
morphologies. These plots are usually not able to render more than a 30-50 cells at the
same time depending on the complexity of their morphology.

You can also plot morphologies:

	plot_morphology(m): Plots a Morphology

	plot_fiber_morphology(fm): Plots a FiberMorphology

	plot_voxel_cloud(m.cloud): Plots a VoxelCloud

All of the above functions take a fig keyword argument of type
plotly.graph_objects.Figure in case you want to modify the figure, or combine
multiple plotting functions on the same figure, such as plotting a morphology and the
voxel cloud of its axon.

Blender

The BSB features a blender module capable of creating the network inside of Blender and
animating the network activity. On top of that it completely prepares the scene including
camera and lighting and contains rendering and sequencing pipelines so that videos of the
network can be produced from start to finish with the BSB framework.

This guide assumes familiarity with Blender but can probably be succesfully reproduced by
a panicking PhD student with a deadline tomorrow aswell.

Blender mixin module

To use a network in the Blender context invoke the blender mixins using the
for_blender() function. This will load all the blender functions onto the network
object:

import bpy, bsb.core

network = bsb.core.from_hdf5("mynetwork.hdf5")
network.for_blender()
`network` now holds a reference to each BSB blender mixin/blendin function

Blending

Some of the functions in the blender module set the scene state state-independently. This
means that whatever state your blender scene used to be in before calling the function,
afterwards some aspect of the scene state will always be the same. The function calls …
blend in. A concrete example would be the network.load_population function: If the current scene does not contain the
population being loaded it will be created, anywhere in the script after the function call
you can safely assume the population exists in the scene. Since the function does nothing
if the population exists you can put it anywhere.

These blending functions are useful because you’re likely to want to change some colors or
sizes or positions of large amounts of objects and the easiest way to do that is by
changing the declarative value and repeating your script. This would not be possible if
the load_population function were to always recreate the population each time the
script was called.

The primary blending function is the network.blend(name, scene) function that blends
your network into the scene under the given name, blending in a root collection, cells
collection, camera and light for it. If there’s nothing peculiar about any of the cell
types in your network fire up the load_populations blendin and your network will pop
up in the scene. From here on out you are either free to do with the blender objects what
you want or you can continue to use some of the BSB blendins:

import bpy, bsb.core, h5py, itertools

network = bsb.core.from_hdf5("mynetwork.hdf5")
Blend the network into the current scene under the name `scaffold`
network.for_blender().blend(bpy.context.scene, "scaffold")
Load all cell types into the blender scene
populations = network.get_populations()
cells = itertools.chain(*(p.cells for p in populations.values()))
Use the 'pulsar' animation to animate all cells with the simulation results
with h5py.File("my_results.hdf5", "r") as f:
 # Animate the simulation's spikes
 network.animate.pulsar(f["recorders/soma_spikes"], cells)

Note

While load_populations simply checks the existence, get_populations returns a
BlenderPopulation object that holds references to each cell, and its Blender object.
Some work goes into looking up the blender object for each cell so if you don’t use the
cells in every run of the script it might be better to open up with a
load_populations and call get_population(name) later when you need a specific
population.

Warning

It’s easy to overload Blender with cell objects. It becomes quite difficult to use
Blender around 20,000 cells. If you have significantly more cells be sure to save
unpopulated versions of your Blender files, run the blendin script, save as another
file, render it and make the required changes to the unpopulated version, repeating the
process. Optimizations are likely to be added in the future.

Blender HPC workflow

The devops/blender-pipe folder contains scripts to facilitate the rendering and
sequencing of BSB blendfiles on HPC systems. Copy them together to a directory on the HPC
system and make sure that the blender command opens Blender. The pipeline contains 2
steps, rendering each frame in parallel and sequencing the rendered images into a
video.

jrender.slurm

The render jobscript uses render.py to invoke Blender. Each Blender process will be
tasked with rendering a certain proportion of the frames. jrender.slurm takes 2
arguments, the blendfile and the output image folder:

sbatch jrender.slurm my_file.blend my_file_imgs

jsequence.slurm

The sequencing jobscript stitches together the rendered frames into a video. This has to
be done in serial on a single node. It takes the blendfile and image folder as arguments:

sbatch jsequence.slurm my_file.blend my_file_imgs

Cell Placement

Cell placement is handled by the placement module.
This module will place the cell types in the layers based on a certain
Placement Strategy.

Placement occurs as the first step during network architecture compilation.

The placement order starts from cell type with the lowest cell count first
unless specified otherwise in the cell type’s placement configuration.

See the List of placement strategies

Contents

	Cell Placement

	Configuration

	Cell count

	Placement order

	Placement Strategy

	Placing cells

	Labels

Configuration

Cell count

Specifying cell count can be done with count, density (µm^-3),
planar_density (µm^-2) or a ratio to another cell with
placement_relative_to (other cell type) and either density_ratio to
place with their density multiplied by the given ratio or
placement_count_ratio to place with their count multiplied by the given
ratio

Placement order

By default the cell types are placed sorted from least to most cells per type.
This default order can be influenced by specifying an after attribute
in the cell type’s placement configuration. This is an array of cell type names
which need to be placed before this cell type:

{
 "cell_types": {
 "later_cell_type": {
 "...": "...",
 "after": ["first_cell_type"]
 },
 "first_cell_type": { "...": "..." },
 }
}

Placement Strategy

Each cell type has to specify a placement strategy that determines the algorithm
used to place cells. The placement strategy is an interface whose place
method is called when placement occurs.

Placing cells

Call the scaffold instance’s core.Scaffold.place_cells() function to
place cells in the simulation volume.

Labels

Morphologies

Morphologies are the 3D representation of a cell. In the BSB they consist of branches,
pieces of cable described as vectors of the properties of points. Consider the following
branch with 4 points p0, p1, p2, p3:

branch0 = [x, y, z, r]
x = [x0, x1, x2, x3]
y = [y0, y1, y2, y3]
z = [z0, z1, z2, z3]
r = [r0, r1, r2, r3]

The points on the branch can also be described as individual Compartments:

branch0 = [c0, c1, c2]
c0 = Comp(start=[x0, y0, z0], end=[x1, y1, z1], radius=r1)
c1 = Comp(start=[x1, y1, z1], end=[x2, y2, z2], radius=r2)
c2 = Comp(start=[x2, y2, z2], end=[x3, y3, z3], radius=r3)

Branches also specify which other branches they are connected to and in this way the
entire network of neuronal processes can be described. Those branches that do not have a
parent branch are called roots. A morphology can have as many roots as it likes;
usually in the case of 1 root it represents the soma; in the case of many roots they each
represent the start of a process such as an axon on dendrite around an imaginary soma.

In the end a morphology can be summed up in pseudo-code as:

m = Morphology(roots)
m.roots = <all roots>
m.branches = <all branches, depth first starting from the roots>

The branches attribute is the result of a depth-first iteration of the roots list. Any
kind of iteration over roots or branches will always follow this same depth-first order.

The data of these morphologies are stored in MorphologyRepositories as groups of
branches following the first vector-based branch description. If you want to use
compartments you’ll have to call branch.to_compartments() or
morphology.to_compartments(). For a root branch this will yield n - 1 compartments
formed as line segments between pairs of points on the branch. For non-root branches an
extra compartment is prepended between the last point of the parent branch and the first
point of the child branch. Compartments are individuals so branches are no longer used to
describe the network of points, instead each compartment lists their own parent
compartment.

Using morphologies

For this introduction we’re going to assume that you have a MorphologyRepository with
morphologies already present in them. To learn how to create your own morphologies stored
in MorphologyRepositories see morphologies/repository.

Let’s start with loading a morphology and inspecting its root
Branch:

from bsb.core import from_hdf5
from bsb.output import MorphologyRepository

mr = MorphologyRepository("path/to/mr.hdf5")
Alternatively if you have your MR inside of a compiled network:
network = from_hdf5("network.hdf5")
mr = network.morphology_repository
morfo = mr.get_morphology("my_morphology")

Use a local reference to the properties if you're not going to manipulate the
morphology, as they require a full search of the morphology to be determined every
time the property is accessed.
roots = morfo.roots
branches = morfo.branches
print("Loaded a morphology with", len(roots), "roots, and", len(branches), "branches")
In most morphologies there will be a single root, representing the soma.
soma_branch = roots[0]

Use the vectors of the branch (this is the most performant option)
print("A branch can be represented by the following vectors:")
print("x:", soma_branch.x)
print("y:", soma_branch.y)
print("z:", soma_branch.z)
print("r:", soma_branch.radii)
Use the points property to retrieve a matrix notation of the branch
(Stacks the vectors into a 2d matrix)
print("The soma can also be represented by the following matrix:", soma_branch.points)

There's also an iterator to walk over the points in the vectors
print("The soma is defined as the following points:")
for point in soma_branch.walk():
 print("*", point)

As you can see an individual branch contains all the positional data of the individual
points in the morphology. The morphology object itself then contains the collection of
branches. Normally you’d use the .branches but if you want to work with the positional
data of the whole morphology in a object you can do this by flattening the morphology:

from bsb.core import from_hdf5

network = from_hdf5("network.hdf5")
mr = network.morphology_repository
morfo = mr.get_morphology("my_morphology")

print("All the branches in depth-first order:", morfo.branches)
print("All the points on those branches in depth first order:")
print("- As vectors:", morfo.flatten())
print("- As matrix:", morfo.flatten(matrix=True).shape)

Cell Connectivity

Cell connections are made as the second step of compilation. Each connection
type configures one connectivity.ConnectionStrategy and can override
the connect method to connect cells to eachother. Use the scaffold instance’s
:func:.core.Scaffold.connect_cells` to connect cells to eachother.

See the List of connection strategies.

Configuration

Each ConnectionStrategy is a ConfigurableClass, meaning that the attributes from
the configuration files will be copied and validated onto the connection object.

Connecting cells

The connection matrices use a 2 column, 2 dimensional ndarray where the columns
are the from and to id respectively. For morphologically detailed connections
additional identifiers can be passed into the function to denote the specific
compartments and morphologies that were used.

Simulating networks with the BSB

The BSB manages simulations by deferring as soon as possible to the simulation backends.
Each simulator has good reasons to make their design choices, fitting to their simulation
paradigm. These choices lead to divergence in how simulations are described, and each
simulator has their own niche functions. This means that if you are already familiar with
a simulator, writing simulation config should feel familiar, on top of that the BSB is
able to offer you access to each simulator’s full set of features. The downside is that
you’re required to write a separate simulation config block per backend.

Now, let’s get started.

Conceptual overview

Each simulation config block needs to specify which simulator they use. Valid
values are arbor, nest or neuron. Also included in the top level block are the
duration, resolution and temperature attributes:

{
 "simulations": {
 "my_arbor_sim": {
 "simulator": "arbor",
 "duration": 2000,
 "resolution": 0.025,
 "temperature": 32,
 "cell_models": {

 },
 "connection_models": {

 },
 "devices": {

 }
 }
 }
}

The cell_models are the simulator specific representations of the network’s
cell types, the connection_models of the network’s
connectivity types and the devices
define the experimental setup (such as input stimuli and recorders). All of the above is
simulation backend specific and are covered in detail below.

Arbor

Cell models

The keys given in the cell_models should correspond to a cell type in the
network. If a certain cell type does not have a corresponding cell model then no
cells of that type will be instantiated in the network. Cell models in Arbor should refer
to importable arborize cell models. The Arborize model’s .cable_cell factory will
be called to produce cell instances of the model:

{
 "cell_models": {
 "cell_type_A": {
 "model": "my.models.ModelA"
 },
 "afferent_to_A": {
 "relay": true
 }
 }
}

Note

Relays will be represented as spike_source_cells which can, through the connectome
relay signals of other relays or devices. spike_source_cells cannot be the target of
connections in Arbor, and the framework targets the targets of a relay instead, until
only cable_cells are targeted.

Connection models

todo: doc

{
 "connection_models": {
 "aff_to_A": {
 "weight": 0.1,
 "delay": 0.1
 }
 }
}

Devices

spike_generator and probes:

{
 "devices": {
 "input_stimulus": {
 "device": "spike_generator",
 "explicit_schedule": {
 "times": [1,2,3]
 },
 "targetting": "cell_type",
 "cell_types": ["mossy_fibers"]
 },
 "all_cell_recorder": {
 "targetting": "representatives",
 "device": "probe",
 "probe_type": "membrane_voltage",
 "where": "(uniform (all) 0 9 0)"
 }
 }
}

todo: doc & link to targetting

NEST

NEURON

Configuration reference

Note

The key of a configuration object in its parent will be stored as its name
property and is used throughout the package. Some of these values are
hardcoded into the package and the names of the standard configuration objects
should not be changed.

Root attributes

The root node accepts the following attributes:

	name: Unused, a name for the configuration file. Is stored in the output
files so it can be used for reference.

	output: Configuration object for the output output.HDF5Formatter.

	network_architecture: Configuration object for general simulation properties.

	layers: A dictionary containing the models.Layer configurations.

	cell_types: A dictionary containing the models.CellType configurations.

	connection_types: A dictionary containing the connectivity.ConnectionStrategy configurations.

	simulations: A dictionary containing the simulation.SimulationAdapter configurations.

{
 "name": "...",
 "output": {

 },
 "network_architecture": {

 },
 "layers": {
 "some_layer": {

 },
 "another_layer": {

 }
 },
 "cell_types": {

 },
 "connection_types": {

 },
 "simulations": {

 }
}

Output attributes

Format

This attribute is a string that refers to the implementation of the OutputFormatter
that should be used:

{
 "output": {
 "format": "bsb.output.HDF5Formatter"
 }
}

If you write your own implementation the string should be discoverable by Python.
Here is an example for MyOutputFormatter in a package called my_package:

{
 "output": {
 "format": "my_package.MyOutputFormatter"
 }
}

Your own implementations must inherit from output.OutputFormatter.

File

Determines the path and filename of the output file produced by the output
formatter. This path is relative to Python’s current working directory.

{
 "output": {
 "file": "my_file.hdf5"
 }
}

Network architecture attributes

simulation_volume_x

The size of the X dimension of the simulation volume.

simulation_volume_z

The size of the Z dimension of the simulation volume.

{
 "network_architecture": {
 "simulation_volume_x": 150.0,
 "simulation_volume_z": 150.0
 }
}

Note

The Y can not be set directly as it is a result of stacking/placing the layers.
It’s possible to place cells outside of the simulation volume, and even to place
layers outside of the volume, but it is not recommended behavior. The X and Z
size are merely the base/anchor and a good indicator for the scale of the
simulation, but they aren’t absolute restrictions.

Warning

Do not modify these values directly on the configuration object: It will not rescale
your layers. Use resize instead.

Layer attributes

position

(Optional) The XYZ coordinates of the bottom-left corner of the layer. Is overwritten if
this layer is part of a stack.

"some_layer": {
 position: [100.0, 0.0, 100.0]
}

thickness

A fixed value of Y units.

Required unless the layer is scaled to other layers.

"some_layer": {
 "thickness": 600.0
}

xz_scale

(Optional) The scaling of this layer compared to the simulation volume. By
default a layer’s X and Z scaling are [1.0, 1.0] and so are equal to the
simulation volume.

"some_layer": {
 "xz_scale": [0.5, 2.0]
}

xz_center

(Optional) Should this layer be aligned to the corner or the center of the
simulation volume? Defaults to False.

stack

(Optional) Layers can be stacked on top of eachother if you define this attribute and
give their stack configurations the same stack_id. The
position_in_stack will determine in which order they are stacked, with the
lower values placed on the bottom, receiving the lower Y coordinates. Exactly one layer
per stack should define a position attribute in their stack configuration to
pinpoint the bottom-left corner of the start of the stack.

stack_id

Unique identifier of the stack. All layers with the same stack id are grouped together.

position_in_stack

Unique identifier for the layer in the stack. Layers with larger positions will be placed
on top of layers with lower ids.

position

This attribute needs to be specified in exactly one layer’s stack dictionary
and determines the starting (bottom-corner) position of the stack.

Example

This example defines 2 layers in the same stack:

{
 "layers": {
 "top_layer": {
 "thickness": 300,
 "stack": {
 "stack_id": 0,
 "position_in_stack": 1,
 "position": [0., 0., 0.]
 }
 },
 "bottom_layer": {
 "thickness": 200,
 "stack": {
 "stack_id": 0,
 "position_in_stack": 0
 }
 }
 }
}

volume_scale

(Optional) The scaling factor used to scale this layer with respect to other layers. If
this attribute is set, the scale_from_layers attribute is also required.

"some_layer": {
 "volume_scale": 10.0,
 "scale_from_layers": ["other_layer"]
}

scale_from_layers

(Optional) A list of layer names whose volume needs to be added up, and this layer’s
volume needs to be scaled to.

Example

Layer A has a volume of 2000.0, Layer B has a volume of 3000.0.
Layer C specifies a volume_scale of 10.0 and scale_from_layers = ["layer_a",
"layer_b"]; this will cause it to become a cube (unless volume_dimension_ratio is
specified) with a volume of (2000.0 + 3000.0) * 10.0 = 50000.0

volume_dimension_ratio

(Optional) Ratio of the rescaled dimensions. All given numbers are normalized to the Y
dimension:

"some_layer": {
 "volume_scale": 10.0,
 "scale_from_layers": ["other_layer"],
 # Cube (default):
 "volume_dimension_ratio": [1., 1., 1.],
 # High pole:
 "volume_dimension_ratio": [1., 20., 1.], # Becomes [0.05, 1., 0.05]
 # Flat bed:
 "volume_dimension_ratio": [20., 1., 20.]
}

Cell Type Attributes

entity

If a cell type is marked as an entity with "entity": true, it will not receive a
position in the simulation volume, but it will still be assigned an ID during placement
that can be used for the connectivity step. This is for example useful for afferent
fibers.

If entity is true no morphology or plotting needs
to be specified.

relay

If a cell type is a relay it immediately relays all of its inputs to its
target cells. Also known as a parrot neuron.

placement

Configuration node of the placement of this cell type. See Placement Attributes.

morphology

Configuration node of the morphologies of this cell type. This is still an experimental
API, expect changes. See Morphology attributes.

plotting

Configuration node of the plotting attributes of this cell type. See Plotting attributes.

Example

Placement Attributes

Each configuration node needs to specify a placement.PlacementStrategy through
class. Depending on the strategy another specific set of attributes is
required. To see how to configure each placement.PlacementStrategy see the
List of placement strategies.

class

A string containing a PlacementStrategy class name, including its module.

"class": "bsb.placement.ParticlePlacement"

Connectivity Attributes

The connectivity configuration node contains some basic attributes listed below and a set
of strategy specific attributes that you can find in
List of connection strategies.

class

A string containing a ConnectivityStrategy class name, including its module.

"class": "bsb.placement.VoxelIntersection"

from_types/to_types

A list of pre/postsynaptic selectors. Each selector is made up of a type to
specify the cell type and a compartments list that specify the involved
compartments for morphologically detailed connection strategies.

Deprecated since version 4.0: Each connectivity type will only be allowed to have 1 presynaptic and postsynaptic cell
type. from/to_types will subsequently be renamed to from/to_type

"from_types": [
 {
 "type": "example_cell",
 "compartments": [
 "axon"
]
 }
]

Morphology attributes

Plotting attributes

color

The color representation for this cell type in plots. Can be any valid Plotly
color string.

"color": "black"
"color": "#000000"

label

The legend label for this cell type in plots.

"label": "My Favourite Cells"

Reference Guide

Full reference guide to the most important parts of the documentation.

References:

	Command line interface module

	Configuration module

	Connectivity module

	Exceptions module

	Functions module

	Helpers module

	Models module

	Morphologies module

	Networks module

	Output module

	Placement module

	Plotting module

	Postprocessing module

	Scaffold class
	from_hdf5

	Simulation module

	Simulators
	NEST module

	NEURON module

	Trees module

	Voxels module

Command line interface module

This module contains all classes and functions required to run the scaffold
from the command line.

	
exception bsb.cli.ParseError

	Thrown when the parsing of a command string fails.

	
class bsb.cli.ReplState

	Stores the REPL state and executes each step of the REPL.

	
add_parser_globals()

	Adds subparsers and arguments that should be there in any state.

	
add_subparser(*args, **kwargs)

	Add a top level subparser to the current REPL parser.

	
clear_prefix()

	Clear the REPL prefix.

	
close_hdf5()

	Closes the currently open HDF5 file.

	Raises

	ParseError – Raised if there’s no open HDF5 file.

	Return type

	None

	
destroy_globals()

	Always called before the REPL exits to clean up open resources.

	
exit_repl(args)

	Exit the REPL.

	
open_hdf5(args)

	Callback function that handles the open hdf5 command.

	Parameters

	args (Namespace) – Result of ArgumentParser.parse_args()

	Return type

	None

	
open_morphology_repository(args)

	Callback function that handles the open mr command.

	Parameters

	args (Namespace) – Result of ArgumentParser.parse_args()

	Return type

	None

	
repl()

	Execute the next repl step.

	
set_next_state(state)

	Set the next REPL state.

	Parameters

	state (string) – The next state. For each state there should be a set_parser_``state``_state function (e.g. set_parser_base_state()).

	Return type

	None

	
set_parser_base_hdf5_state()

	Adds the HDF5 state subparsers and arguments to the REPL parser.

	
set_parser_base_mr_state()

	Adds the morphology repository state subparsers and arguments to
the REPL parser.

	
set_parser_base_state()

	Adds the initial subparsers and arguments to the REPL parser.

	
set_reply(message)

	Set the REPL reply, to be printed to the user at the end of this step.

	Parameters

	message (string) – The reply to print.

	Return type

	None

	
update_parser()

	Creates a new parser for the next REPL step. Tries to add
subparsers and arguments if the method “set_parser_``state``_state”
is callable.

	
bsb.cli.check_positive_factory(name)

	Return a function to report whether a certain value is a positive integer.
If it isn’t, raise an ArgumentTypeError.

	
bsb.cli.repl_plot_morphology(morphology_repository, args)

	Callback function that handles plot command in the base_mr state.

	
bsb.cli.repl_view_hdf5(handle, args)

	Callback function that handles view command in the base_hdf5 state.

	
bsb.cli.repl_voxelize(morphology_repository, args)

	Callback function that handles voxelize command in the base_mr state.

	
bsb.cli.scaffold_cli()

	console_scripts entry point for the scaffold package. Will start the CLI handler or REPL handler.

	
bsb.cli.start_cli()

	Scaffold package CLI handler

	
bsb.cli.start_repl()

	Scaffold package REPL handler. Will parse user commands.

Configuration module

Connectivity module

	
exception bsb.connectivity.AdapterError(*args, **kwargs)

	

	
class bsb.connectivity.AllToAll

	All to all connectivity between two neural populations

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
exception bsb.connectivity.ArborError(*args, **kwargs)

	

	
exception bsb.connectivity.AttributeMissingError(*args, **kwargs)

	

	
exception bsb.connectivity.CastConfigurationError(*args, **kwargs)

	

	
exception bsb.connectivity.CastError(*args, **kwargs)

	

	
exception bsb.connectivity.CircularMorphologyError(*args, **kwargs)

	

	
exception bsb.connectivity.ClassError(*args, **kwargs)

	

	
exception bsb.connectivity.CompartmentError(*args, **kwargs)

	

	
exception bsb.connectivity.ConfigurableCastError(*args, **kwargs)

	

	
exception bsb.connectivity.ConfigurableClassNotFoundError(*args, **kwargs)

	

	
exception bsb.connectivity.ConfigurationError(*args, **kwargs)

	

	
exception bsb.connectivity.ConfigurationFormatError(*args, **kwargs)

	

	
exception bsb.connectivity.ConfigurationWarning

	

	
class bsb.connectivity.ConnectionStrategy

	

	
exception bsb.connectivity.ConnectivityError(*args, **kwargs)

	

	
exception bsb.connectivity.ConnectivityWarning

	

	
class bsb.connectivity.ConnectomeAscAxonPurkinje

	Legacy implementation for the connections between ascending axons and purkinje cells.

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.connectivity.ConnectomeBCSCPurkinje

	Legacy implementation for the connections between basket cells,stellate cells and purkinje cells.

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.connectivity.ConnectomeDcnGlyGolgi

	Implementation for the connections between mossy fibers and glomeruli.
The connectivity is somatotopic and

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.connectivity.ConnectomeDcnGolgi

	Implementation for the connections between mossy fibers and glomeruli.
The connectivity is somatotopic and

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.connectivity.ConnectomeDcnGranule

	Implementation for the connections between mossy fibers and glomeruli.
The connectivity is somatotopic and

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.connectivity.ConnectomeGapJunctions

	Legacy implementation for gap junctions between a cell type.

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.connectivity.ConnectomeGapJunctionsGolgi

	Legacy implementation for Golgi cell gap junctions.

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.connectivity.ConnectomeGlomerulusGolgi

	Legacy implementation for the connections between Golgi cells and glomeruli.

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.connectivity.ConnectomeGlomerulusGranule

	Legacy implementation for the connections between glomeruli and granule cells.

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.connectivity.ConnectomeGolgiGlomerulus

	Legacy implementation for the connections between glomeruli and Golgi cells.

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.connectivity.ConnectomeGolgiGranule

	Legacy implementation for the connections between Golgi cells and granule cells.

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.connectivity.ConnectomeGranuleGolgi

	Legacy implementation for the connections between Golgi cells and glomeruli.

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.connectivity.ConnectomeIOMolecular

	Legacy implementation for the connection between inferior olive and Molecular layer interneurons.
As this is a spillover-mediated non-synaptic connection depending on the IO to Purkinje cells, each interneuron connected
to a PC which is receving input from one IO, is also receiving input from that IO

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.connectivity.ConnectomeIOPurkinje

	Legacy implementation for the connection between inferior olive and Purkinje cells.
Purkinje cells are clustered (number of clusters is the number of IO cells), and each clusters
is innervated by 1 IO cell

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.connectivity.ConnectomeMossyDCN

	Implementation for the connection between mossy fibers and DCN cells.

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.connectivity.ConnectomeMossyGlomerulus

	Implementation for the connections between mossy fibers and glomeruli.
The connectivity is somatotopic and

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.connectivity.ConnectomePFInterneuron

	Legacy implementation for the connections between parallel fibers and a molecular layer interneuron cell_type.

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.connectivity.ConnectomePFPurkinje

	Legacy implementation for the connections between parallel fibers and purkinje cells.

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.connectivity.ConnectomePurkinjeDCN

	Legacy implementation for the connection between purkinje cells and DCN cells.
Also rotates the dendritic trees of the DCN.

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
exception bsb.connectivity.ContinuityError(*args, **kwargs)

	

	
class bsb.connectivity.Convergence

	Implementation of a general convergence connectivity between
two populations of cells (this does not work with entities)

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
exception bsb.connectivity.DataNotFoundError(*args, **kwargs)

	

	
exception bsb.connectivity.DataNotProvidedError(*args, **kwargs)

	

	
exception bsb.connectivity.DatasetNotFoundError(*args, **kwargs)

	

	
exception bsb.connectivity.DeviceConnectionError(*args, **kwargs)

	

	
exception bsb.connectivity.DynamicClassError(*args, **kwargs)

	

	
class bsb.connectivity.ExternalConnections

	Load the connection matrix from an external source.

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
exception bsb.connectivity.ExternalSourceError(*args, **kwargs)

	

	
class bsb.connectivity.FiberIntersection

	FiberIntersection connection strategies voxelize a fiber and find its intersections with postsynaptic cells.
It’s a specific case of VoxelIntersection.

For each presynaptic cell, the following steps are executed:

	Extract the FiberMorphology

	Interpolate points on the fiber until the spatial resolution is respected

	transform

	Interpolate points on the fiber until the spatial resolution is respected

	Voxelize (generates the voxel_tree associated to this morphology)

	Check intersections of presyn bounding box with all postsyn boxes

	Check intersections of each candidate postsyn with current presyn voxel_tree

	
intersect_voxel_tree(from_voxel_tree, to_cloud, to_pos)

	Similarly to intersect_clouds from VoxelIntersection, it finds intersecting voxels between a from_voxel_tree
and a to_cloud set of voxels

	Parameters

	
	from_voxel_tree – tree built from the voxelization of all branches in the fiber (in absolute coordinates)

	to_cloud (VoxelCloud) – voxel cloud associated to a to_cell morphology

	to_pos (list) – 3-D position of to_cell neuron

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.connectivity.FiberTransform

	

	
exception bsb.connectivity.IncompleteExternalMapError(*args, **kwargs)

	

	
exception bsb.connectivity.IncompleteMorphologyError(*args, **kwargs)

	

	
exception bsb.connectivity.IntersectionDataNotFoundError(*args, **kwargs)

	

	
exception bsb.connectivity.InvalidDistributionError(*args, **kwargs)

	

	
exception bsb.connectivity.KernelLockedError(*args, **kwargs)

	

	
exception bsb.connectivity.KernelWarning

	

	
exception bsb.connectivity.LayerNotFoundError(*args, **kwargs)

	

	
exception bsb.connectivity.MissingMorphologyError(*args, **kwargs)

	

	
exception bsb.connectivity.MissingSourceError(*args, **kwargs)

	

	
exception bsb.connectivity.MorphologyDataError(*args, **kwargs)

	

	
exception bsb.connectivity.MorphologyError(*args, **kwargs)

	

	
exception bsb.connectivity.MorphologyRepositoryError(*args, **kwargs)

	

	
exception bsb.connectivity.MorphologyWarning

	

	
exception bsb.connectivity.NestError(*args, **kwargs)

	

	
exception bsb.connectivity.NestKernelError(*args, **kwargs)

	

	
exception bsb.connectivity.NestModelError(*args, **kwargs)

	

	
exception bsb.connectivity.NestModuleError(*args, **kwargs)

	

	
exception bsb.connectivity.NeuronError(*args, **kwargs)

	

	
exception bsb.connectivity.OrderError(*args, **kwargs)

	

	
exception bsb.connectivity.ParallelIntegrityError(*args, **kwargs)

	

	
exception bsb.connectivity.PlacementError(*args, **kwargs)

	

	
exception bsb.connectivity.PlacementWarning

	

	
exception bsb.connectivity.QuiverFieldWarning

	

	
class bsb.connectivity.QuiverTransform

	QuiverTransform applies transformation to a FiberMorphology, based on an orientation field in a voxelized volume.
Used for parallel fibers.

	
transform_branch(branch, offset)

	Compute bending transformation of a fiber branch (discretized according to original compartments and configured resolution value).
The transformation is a rotation of each segment/compartment of each fiber branch to align to the cross product between
the orientation vector and the transversal direction vector (i.e. cross product between fiber morphology/parent branch orientation
and branch direction):
compartment[n+1].start = compartment[n].end
cross_prod = orientation_vector X transversal_vector or transversal_vector X orientation_vector
compartment[n+1].end = compartment[n+1].start + cross_prod * length_comp

	Parameters

	branch (Branch object) – a branch of the current fiber to be transformed

	Returns

	a transformed branch

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
exception bsb.connectivity.ReceptorSpecificationError(*args, **kwargs)

	

	
exception bsb.connectivity.RelayError(*args, **kwargs)

	

	
exception bsb.connectivity.RepositoryWarning

	

	
exception bsb.connectivity.ResourceError(*args, **kwargs)

	

	
class bsb.connectivity.SatelliteCommonPresynaptic

	Connectivity for satellite neurons (homologous to center neurons)

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
exception bsb.connectivity.ScaffoldError(*args, **kwargs)

	

	
exception bsb.connectivity.ScaffoldWarning

	

	
exception bsb.connectivity.SimulationNotFoundError(*args, **kwargs)

	

	
exception bsb.connectivity.SimulationWarning

	

	
exception bsb.connectivity.SourceQualityError(*args, **kwargs)

	

	
exception bsb.connectivity.SpatialDimensionError(*args, **kwargs)

	

	
exception bsb.connectivity.SuffixTakenError(*args, **kwargs)

	

	
class bsb.connectivity.TouchDetector

	Connectivity based on intersection of detailed morphologies

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.connectivity.TouchingConvergenceDivergence

	
	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
exception bsb.connectivity.TransmitterError(*args, **kwargs)

	

	
exception bsb.connectivity.TreeError(*args, **kwargs)

	

	
exception bsb.connectivity.TypeNotFoundError(*args, **kwargs)

	

	
exception bsb.connectivity.UnionCastError(*args, **kwargs)

	

	
exception bsb.connectivity.UnknownDistributionError(*args, **kwargs)

	

	
exception bsb.connectivity.UnknownGIDError(*args, **kwargs)

	

	
exception bsb.connectivity.UserUserDeprecationWarning

	

	
class bsb.connectivity.VoxelIntersection

	This strategy voxelizes morphologies into collections of cubes, thereby reducing
the spatial specificity of the provided traced morphologies by grouping multiple
compartments into larger cubic voxels. Intersections are found not between the
seperate compartments but between the voxels and random compartments of matching
voxels are connected to eachother. This means that the connections that are made
are less specific to the exact morphology and can be very useful when only 1 or a
few morphologies are available to represent each cell type.

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
exception bsb.connectivity.VoxelTransformError(*args, **kwargs)

	

	
exception bsb.connectivity.VoxelizationError(*args, **kwargs)

	

	
bsb.connectivity.report(*message, level=2, ongoing=False, token=None, nodes=None, all_nodes=False)

	Send a message to the appropriate output channel.

	Parameters

	
	message (string) – Text message to send.

	level (int) – Verbosity level of the message.

	ongoing – The message is part of an ongoing progress report. This replaces the endline (n) character with a carriage return (r) character

	
bsb.connectivity.warn(message, category=None)

	Send a warning.

	Parameters

	
	message (str) – Warning message

	category – The class of the warning.

Exceptions module

	
exception bsb.exceptions.AdapterError(*args, **kwargs)

	

	
exception bsb.exceptions.ArborError(*args, **kwargs)

	

	
exception bsb.exceptions.AttributeMissingError(*args, **kwargs)

	

	
exception bsb.exceptions.CastConfigurationError(*args, **kwargs)

	

	
exception bsb.exceptions.CastError(*args, **kwargs)

	

	
exception bsb.exceptions.CircularMorphologyError(*args, **kwargs)

	

	
exception bsb.exceptions.ClassError(*args, **kwargs)

	

	
exception bsb.exceptions.CompartmentError(*args, **kwargs)

	

	
exception bsb.exceptions.ConfigurableCastError(*args, **kwargs)

	

	
exception bsb.exceptions.ConfigurableClassNotFoundError(*args, **kwargs)

	

	
exception bsb.exceptions.ConfigurationError(*args, **kwargs)

	

	
exception bsb.exceptions.ConfigurationFormatError(*args, **kwargs)

	

	
exception bsb.exceptions.ConfigurationWarning

	

	
exception bsb.exceptions.ConnectivityError(*args, **kwargs)

	

	
exception bsb.exceptions.ConnectivityWarning

	

	
exception bsb.exceptions.ContinuityError(*args, **kwargs)

	

	
exception bsb.exceptions.DataNotFoundError(*args, **kwargs)

	

	
exception bsb.exceptions.DataNotProvidedError(*args, **kwargs)

	

	
exception bsb.exceptions.DatasetNotFoundError(*args, **kwargs)

	

	
exception bsb.exceptions.DeviceConnectionError(*args, **kwargs)

	

	
exception bsb.exceptions.DynamicClassError(*args, **kwargs)

	

	
exception bsb.exceptions.ExternalSourceError(*args, **kwargs)

	

	
exception bsb.exceptions.IncompleteExternalMapError(*args, **kwargs)

	

	
exception bsb.exceptions.IncompleteMorphologyError(*args, **kwargs)

	

	
exception bsb.exceptions.IntersectionDataNotFoundError(*args, **kwargs)

	

	
exception bsb.exceptions.InvalidDistributionError(*args, **kwargs)

	

	
exception bsb.exceptions.KernelLockedError(*args, **kwargs)

	

	
exception bsb.exceptions.KernelWarning

	

	
exception bsb.exceptions.LayerNotFoundError(*args, **kwargs)

	

	
exception bsb.exceptions.MissingMorphologyError(*args, **kwargs)

	

	
exception bsb.exceptions.MissingSourceError(*args, **kwargs)

	

	
exception bsb.exceptions.MorphologyDataError(*args, **kwargs)

	

	
exception bsb.exceptions.MorphologyError(*args, **kwargs)

	

	
exception bsb.exceptions.MorphologyRepositoryError(*args, **kwargs)

	

	
exception bsb.exceptions.MorphologyWarning

	

	
exception bsb.exceptions.NestError(*args, **kwargs)

	

	
exception bsb.exceptions.NestKernelError(*args, **kwargs)

	

	
exception bsb.exceptions.NestModelError(*args, **kwargs)

	

	
exception bsb.exceptions.NestModuleError(*args, **kwargs)

	

	
exception bsb.exceptions.NeuronError(*args, **kwargs)

	

	
exception bsb.exceptions.OrderError(*args, **kwargs)

	

	
exception bsb.exceptions.ParallelIntegrityError(*args, **kwargs)

	

	
exception bsb.exceptions.PlacementError(*args, **kwargs)

	

	
exception bsb.exceptions.PlacementWarning

	

	
exception bsb.exceptions.QuiverFieldWarning

	

	
exception bsb.exceptions.ReceptorSpecificationError(*args, **kwargs)

	

	
exception bsb.exceptions.RelayError(*args, **kwargs)

	

	
exception bsb.exceptions.RepositoryWarning

	

	
exception bsb.exceptions.ResourceError(*args, **kwargs)

	

	
exception bsb.exceptions.ScaffoldError(*args, **kwargs)

	

	
exception bsb.exceptions.ScaffoldWarning

	

	
exception bsb.exceptions.SimulationNotFoundError(*args, **kwargs)

	

	
exception bsb.exceptions.SimulationWarning

	

	
exception bsb.exceptions.SourceQualityError(*args, **kwargs)

	

	
exception bsb.exceptions.SpatialDimensionError(*args, **kwargs)

	

	
exception bsb.exceptions.SuffixTakenError(*args, **kwargs)

	

	
exception bsb.exceptions.TransmitterError(*args, **kwargs)

	

	
exception bsb.exceptions.TreeError(*args, **kwargs)

	

	
exception bsb.exceptions.TypeNotFoundError(*args, **kwargs)

	

	
exception bsb.exceptions.UnionCastError(*args, **kwargs)

	

	
exception bsb.exceptions.UnknownDistributionError(*args, **kwargs)

	

	
exception bsb.exceptions.UnknownGIDError(*args, **kwargs)

	

	
exception bsb.exceptions.UserUserDeprecationWarning

	

	
exception bsb.exceptions.VoxelTransformError(*args, **kwargs)

	

	
exception bsb.exceptions.VoxelizationError(*args, **kwargs)

	

Functions module

Contains all the mathematical helper functions used throughout the scaffold.
Differs from helpers.py only categorically. Helpers.py contains functions,
classes and general logic that supports the scaffold, while functions.py
contains a collection of mathematical functions.

	
bsb.functions.add_y_axis(points, min, max)

	Add random values to the 2nd column of a matrix of 2D points.

	
bsb.functions.apply_2d_bounds(possible_points, cell_bounds)

	Compare a 2xN matrix of XZ coordinates to a matrix 2x3 with a minimum column and maximum column of XYZ coordinates.

	
bsb.functions.compute_circle(center, radius, n_samples=50)

	Create n_samples points on a circle based on given center and radius.

	Parameters

	
	center (array-like) – XYZ vector of the circle center

	radius (scalar value) – Radius of the circle

	n_samples (int) – Amount of points on the circle.

	
bsb.functions.compute_intersection_slice(l1, l2)

	Returns the indices of elements in l1 that intersect with l2.

	
bsb.functions.exclude_index(arr, index)

	Return a new list with the element at index removed.

	
bsb.functions.get_candidate_points(center, radius, bounds, min_ε, max_ε, return_ε=False)

	Returns a list of points that are suited next candidates in a random walk.

Computes a circle of points between 2r + ϵ distance away from the center
and removes any points that lie outside of the given bounds.

	Parameters

	
	center (list) – 2D position of the starting point.

	radius (float) – Unit distance radius of the particle at the center point.

	bounds (ndarray) – A 2x3 matrix where the first column are the minimum XYZ
and the last column the maximum XYZ.

	min_ϵ (float) – Lower bound of epsilon used to calculate random distance.

	max_ϵ (float) – Upper bound of epsilon used to calculate random distance.

	return_ϵ – If True the candidates and ϵ used to calculate them
will be returned as a tuple.

	
bsb.functions.get_distances(candidates, point)

	Return the distances of a list of points to a common point

	
bsb.functions.poisson_train(frequency, duration, start_time=0, seed=None)

	Generator function for a Homogeneous Poisson train.

	Parameters

	
	frequency – The mean spiking frequency.

	duration – Maximum duration.

	start_time – Timestamp.

	seed – Seed for the random number generator. If None, this will be
decided by numpy, which chooses the system time.

	Returns

	A relative spike time from t=start_time, in seconds (not ms).

EXAMPLE:

Make a list of spikes at 20 Hz for 3 seconds
spikes = [i for i in poisson_train(20, 3)]

Helpers module

	
class bsb.helpers.CastableConfigurableClass

	

	
class bsb.helpers.ConfigurableClass

	A class that can be configured.

	
cast_config()

	Casts/validates values imported onto this object from configuration files to their final form.
The casts dictionary should contain the key of the attribute and a function that takes
a value as only argument. This dictionary will be used to cast the attributes when cast_config
is called.

	
abstract validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.helpers.DistributionConfiguration

	Cast a configuration node into a scipy.stats distribution.

	
fallback

	alias of float

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.helpers.EvalConfiguration

	
	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.helpers.FloatEvalConfiguration

	
	
fallback

	alias of float

	
class bsb.helpers.ListEvalConfiguration

	
	
fallback

	alias of list

	
class bsb.helpers.OptionallyCastable

	

	
bsb.helpers.assert_attr_array(section, attr, section_name)

	Asserts that an attribute exists on a dictionary or object, and that it is an
array.

	Parameters

	
	section (dict, object) – Dictionary or object that needs to contain the attribute.

	attr (string) – Attribute name.

	section_name (string) – Name of the section to print out the location of the missing attribute.

	
bsb.helpers.assert_attr_in(section, attr, values, section_name)

	Assert that the attribute is present in the section dictionary and that its value is included
in the given array.

	
bsb.helpers.continuity_hop(iterator)

	Hop over a continuity list in steps of 2, returning the start & count pairs.

	
bsb.helpers.continuity_list(iterable, step=1)

	Return a compacted notation of a list of nearly continuous numbers.

The iterable will be iterated and chains of continuous numbers will be
determined. Each chain will then be added to the output format as a starting
number and count.

Example: [4,5,6,7,8,9,12] ==> [4,6,12,1]

	Parameters

	
	iterable (iter) – The collection of elements to be compacted.

	step – iterable[i] needs to be equal to iterable[i - 1] + step for
them to considered continuous.

	
bsb.helpers.expand_continuity_list(iterable, step=1)

	Return the full set of items associated with the continuity list, as formatted by
helpers.continuity_list().

	
bsb.helpers.iterate_continuity_list(iterable, step=1)

	Generate the continuity list

	
bsb.helpers.listify_input(value)

	Turn any non-list values into a list containing the value. Sequences will be
converted to a list using list(), None will be replaced by an empty list.

Models module

	
class bsb.models.CellType(name, placement=None)

	A CellType represents a population of cells.

	
list_all_morphologies()

	Return a list of all the morphology identifiers that can represent
this cell type in the simulation volume.

	
place()

	Place this cell type.

	
set_morphology(morphology)

	Set the Morphology class for this cell type.

	Parameters

	morphology (Instance of a subclass of scaffold.morphologies.Morphology) – Defines the geometrical constraints for the axon and dendrites of the cell type.

	
set_placement(placement)

	Set the placement strategy for this cell type.

	
validate()

	Check whether this CellType is valid to be used in the simulation.

	
class bsb.models.ConnectivitySet(handler, tag)

	Connectivity sets store connections.

	
property connection_types

	Return all the ConnectionStrategies that contributed to the creation of this
connectivity set.

	
property connections

	Return a list of Intersections. Connections
contain pre- & postsynaptic identifiers.

	
property from_identifiers

	Return a list with the presynaptic identifier of each connection.

	
get_postsynaptic_types()

	Return a list of the postsynaptic cell types found in this set.

	
get_presynaptic_types()

	Return a list of the presynaptic cell types found in this set.

	
has_compartment_data()

	Check if compartment data exists for this connectivity set.

	
property intersections

	Return a list of Intersections. Intersections
contain pre- & postsynaptic identifiers and the intersecting compartments.

	
property meta

	Retrieve the metadata associated with this connectivity set. Returns
None if the connectivity set does not exist.

	Returns

	Metadata

	Return type

	dict

	
property to_identifiers

	Return a list with the postsynaptic identifier of each connection.

	
class bsb.models.Layer(name, origin, dimensions, scaling=True)

	A Layer represents a compartment of the topology of the simulation volume that slices
the volume in horizontally stacked portions.

	
scale_to_reference()

	Compute scaled layer volume

To compute layer thickness, we scale the current layer to the combined volume
of the reference layers. A ratio between the dimension can be specified to
alter the shape of the layer. By default equal ratios are used and a cubic
layer is obtained (given by dimension_ratios).

The volume of the current layer (= X*Y*Z) is scaled with respect to the volume
of reference layers by a factor volume_scale, so:

X*Y*Z = volume_reference_layers / volume_scale [A]

Supposing that the current layer dimensions (X,Y,Z) are each one depending on
the dimension Y according to dimension_ratios, we obtain:

X*Y*Z = (Y*dimension_ratios[0] * Y * (Y*dimension_ratios[2]) [B]
X*Y*Z = (Y^3) * prod(dimension_ratios) [C]

Therefore putting together [A] and [C]:
(Y^3) * prod(dimension_ratios) = volume_reference_layers / volume_scale

from which we derive the normalized_size Y, according to the following
formula:

Y = cubic_root((volume_reference_layers * volume_scale) / prod(dimension_ratios))

	
class bsb.models.PlacementSet(handler, cell_type)

	Fetches placement data from storage. You can either access the parallel-array
datasets .identifiers, .positions and .rotations individually or
create a collection of Cells that each contain their own
identifier, position and rotation.

Note

Use core.get_placement_set() to correctly obtain a PlacementSet.

	
property cells

	Reorganize the available datasets into a collection of Cells

	
property identifiers

	Return a list of cell identifiers.

	
property positions

	Return a dataset of cell positions.

	
property rotations

	Return a dataset of cell rotations.

	Raises

	DatasetNotFoundError when there is no rotation information for this
cell type.

Morphologies module

	
class bsb.morphologies.Branch(*args, labels=None)

	A vector based representation of a series of point in space. Can be a root or
connected to a parent branch. Can be a terminal branch or have multiple children.

	
attach_child(branch)

	Attach a branch as a child to this branch.

	Parameters

	branch (Branch) – Child branch

	
property children

	Collection of the child branches of this branch.

	Returns

	list of Branches

	Return type

	list

	
detach_child(branch)

	Remove a branch as a child from this branch.

	Parameters

	branch (Branch) – Child branch

	
label(*labels)

	Add labels to every point on the branch. See label_points to label individual points.

	Parameters

	labels (str) – Label(s) for the branch.

	
label_points(label, mask)

	Add labels to specific points on the branch. See label to label the entire branch.

	Parameters

	
	label (str) – Label to apply to the points.

	mask (np.ndarray(dtype=bool, shape=(branch_size,))) – Boolean mask equal in size to the branch that determines which points get labelled.

	
label_walk()

	Iterate over the labels of each point in the branch.

	
property points

	Return the vectors of this branch as a matrix.

	
property size

	Returns the amount of points on this branch

	Returns

	Number of points on the branch.

	Return type

	int

	
property terminal

	Returns whether this branch is terminal or has children.

	Returns

	True if this branch has no children, False otherwise.

	Return type

	bool

	
to_compartments(start_id=0, parent=None)

	Convert the branch to compartments.

Deprecated since version 3.6: Use the vectors and points API instead (.points, .walk())

	
walk()

	Iterate over the points in the branch.

	
class bsb.morphologies.Compartment(start, end, radius, id=None, labels=None, parent=None, section_id=None, morphology=None)

	Compartments are line segments with a radius. They can be constructed from the points
on a Branch or by concatenating the results of a
depth-first iteration of the branches of a Morphology.

	
classmethod from_template(template, **kwargs)

	Create a compartment based on a template compartment. Accepts any keyword
argument to overwrite or add attributes.

	
class bsb.morphologies.GolgiCellGeometry

	
	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.morphologies.GranuleCellGeometry

	
	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.morphologies.Morphology(roots)

	A multicompartmental spatial representation of a cell based on connected 3D
compartments.

	Todo

	Uncouple from the MorphologyRepository and merge with TrueMorphology.

	
property branches

	Return a depth-first flattened array of all branches.

	
flatten(vectors=None, matrix=False, labels=None)

	Return the flattened vectors of the morphology

	Parameters

	vectors (list of str) – List of vectors to return such as [‘x’, ‘y’, ‘z’] to get the
positional vectors.

	Returns

	Tuple of the vectors in the given order, if matrix is True a
matrix composed of the vectors is returned instead.

	Return type

	tuple of ndarrays (matrix=False) or matrix (matrix=True)

	
get_branches(labels=None)

	Return a depth-first flattened array of all or the selected branches.

	Parameters

	labels (list) – Names of the labels to select.

	Returns

	List of all branches or all branches with any of the labels
when given

	Return type

	list

	
rotate(v0, v)

	Rotate a morphology to be oriented as vector v, supposing to start from orientation v0.
norm(v) = norm(v0) = 1
Rotation matrix R, representing a rotation of angle alpha around vector k

	
to_compartments()

	Return a flattened array of compartments

	
class bsb.morphologies.NilCompartment

	

	
class bsb.morphologies.NoGeometry

	
	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.morphologies.PurkinjeCellGeometry

	
	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.morphologies.RadialGeometry

	
	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.morphologies.Representation

	

	
bsb.morphologies.branch_iter(branch)

	Iterate over a branch and all of its children depth first.

Networks module

	
bsb.networks.reduce_branch(branch, branch_points)

	Reduce a branch (list of points) to only its start and end point and the
intersection with a list of known branch points.

Output module

	
class bsb.output.HDF5Formatter

	Stores the output of the scaffold as a single HDF5 file. Is also a MorphologyRepository
and an HDF5TreeHandler.

	
exists()

	Check if the resource exists.

	
get_cells_of_type(name, entity=False)

	Return the position matrix for a specific cell type.

	
get_connectivity_set(tag)

	Return a connectivity set.

	Parameters

	tag (string) – Key of the connectivity set in the connections group.

	Returns

	The connectivity set.

	Return type

	ConnectivitySet

	Raises

	DatasetNotFoundError

	
get_connectivity_set_connection_types(tag)

	Return all the ConnectionStrategies that contributed to the creation of this
connectivity set.

	
get_connectivity_set_meta(tag)

	Return the metadata associated with this connectivity set.

	
get_connectivity_sets()

	Return all the ConnectivitySets present in the network file.

	
get_simulator_output_path(simulator_name)

	Return the path where a simulator can dump preliminary output.

	
has_cells_of_type(name, entity=False)

	Check whether the position matrix for a certain cell type is present.

	
init_scaffold()

	Initialize the scaffold when it has been loaded from an output file.

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.output.HDF5ResourceHandler

	
	
get_handle(mode='r')

	Open an HDF5 resource.

	
release_handle(handle)

	Close the MorphologyRepository storage resource.

	
class bsb.output.HDF5TreeHandler

	TreeHandler that uses HDF5 as resource storage

	
class bsb.output.MorphologyCache(morphology_repository)

	Loads and caches morphologies so that each
morphology is loaded only once and its instance is shared among all cells
with that Morphology. Saves a lot on memory, but the Morphology should be treated as read only.

	
rotate_all_morphologies(phi_step, theta_step=None)

	Extracts all unrotated morphologies from a morphology_repository and creates rotated versions, at sampled orientations in the 3D space

	Parameters

	
	phi_step (int, optional) – Resolution of azimuth angle sampling, in degrees

	theta_step – Resolution of elevation angle sampling, in degrees

	
class bsb.output.MorphologyRepository(file=None)

	
	
get_handle(mode='r')

	Open the HDF5 storage resource and initialise the MorphologyRepository structure.

	
get_morphology(name, scaffold=None)

	Load a morphology from repository data

	
import_arbz(name, cls, overwrite=False)

	Import an Arborize model as a morphology.

Arborize models make some assumptions about morphologies, inherited from how
NEURON deals with it: There is only 1 root, and the soma is at the beginning
of this root. This is not necesarily so for morphologies in general in the BSB
that can have as many roots as they want.

	
import_swc(file, name, tags=[], overwrite=False)

	Import and store .swc file contents as a morphology in the repository.

	
list_morphologies(include_rotations=False, only_rotations=False, cell_type=None)

	Return a list of morphologies in a morphology repository, filtered by rotation
and/or cell type.

	Parameters

	
	include_rotations (bool) – Include each cached rotation of each morphology.

	only_rotations (bool) – Get only the rotated caches of the morphologies.

	cell_type – Specify the cell type for which you want to extract the morphologies.

	cell_type – CellType

	Returns

	List of morphology names

	Return type

	list

	
class bsb.output.OutputFormatter

	
	
abstract exists()

	Check if the resource exists.

	
abstract get_cells_of_type(name)

	Return the position matrix for a specific cell type.

	
abstract get_connectivity_set(tag)

	Return a connectivity set.

	Parameters

	tag (string) – Key of the connectivity set in the connections group.

	Returns

	The connectivity set.

	Return type

	ConnectivitySet

	Raises

	DatasetNotFoundError

	
abstract get_connectivity_set_connection_types(tag)

	Return the connection types that contributed to this connectivity set.

	
abstract get_connectivity_set_meta(tag)

	Return the meta dictionary of this connectivity set.

	
abstract get_connectivity_sets()

	Return all connectivity sets.

	Returns

	List of connectivity sets.

	Return type

	ConnectivitySet

	
abstract get_simulator_output_path(simulator_name)

	Return the path where a simulator can dump preliminary output.

	
abstract has_cells_of_type(name)

	Check whether the position matrix for a certain cell type is present.

	
abstract init_scaffold()

	Initialize the scaffold when it has been loaded from an output file.

	
class bsb.output.ResourceHandler

	
	
abstract get_handle(mode=None)

	Open the output resource and return a handle.

	
abstract release_handle(handle)

	Close the open output resource and release the handle.

	
class bsb.output.TreeHandler

	Interface that allows a ResourceHandler to handle storage of TreeCollections.

Placement module

Plotting module

	
bsb.plotting.hdf5_gdf_plot_spike_raster(spike_recorders, input_region=None, fig=None, show=True)

	Create a spike raster plot from an HDF5 group of spike recorders saved from NEST gdf files.
Each HDF5 dataset includes the spike timings of the recorded cell populations, with spike
times in the first row and neuron IDs in the second row.

	
bsb.plotting.hdf5_plot_spike_raster(spike_recorders, input_region=None, show=True, cutoff=0, cell_type_sort=None, cell_sort=None)

	Create a spike raster plot from an HDF5 group of spike recorders.

	Parameters

	
	input_region (2-element list-like) – Specifies an interval [min, max] on the x axis to highlight
as active input to the simulation.

	show (bool) – Immediately plot the result

	cutoff (float) – Amount of ms initial simulation to ignore.

	cell_type_sort (function-like) – A function to sort the cell types. Must take 2 dictionaries
as arguments, being the raster plot’s x values per label and y values per label.
Must return an array labels matching those of the x and y values to order them.

	cell_sort (function-like) – A function that takes the cell type label and set of ids and returns
a map to sort them.

	
bsb.plotting.plot_network(network, fig=None, cubic=True, swapaxes=True, show=True, legend=True, from_memory=True)

	Plot a network, either from the current cache or the storage.

	
bsb.plotting.set_morphology_scene_range(scene, offset_morphologies)

	Set the range on a scene containing multiple morphologies.

	Parameters

	
	scene – A scene of the figure. If the figure itself is given, figure.layout.scene will be used.

	offset_morphologies – A list of tuples where the first element is offset and the 2nd is the Morphology

Postprocessing module

	
class bsb.postprocessing.AscendingAxonLengths

	

	
class bsb.postprocessing.BidirectionalContact

	

	
class bsb.postprocessing.CerebellumLabels

	

	
class bsb.postprocessing.DCNRotations

	Create a matrix of planes tilted between -45° and 45°,
storing id and the planar coefficients a, b, c and d for each DCN cell

	
class bsb.postprocessing.DCN_large_differentiation

	Extract from the overall DCN glutamate large cells (GADnL) 2 subpopulations that
are involved in the construction of the NucleoCortical pathways

	
class bsb.postprocessing.LabelMicrozones

	

	
class bsb.postprocessing.MissingAxon

	
	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.postprocessing.PostProcessingHook

	
	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.postprocessing.SpoofDetails

	Create fake morphological intersections between already connected non-detailed
connection types.

Scaffold class

from_hdf5

Bootstrap a scaffold instance from an HDF5 file.

Simulation module

Simulators

	NEST module

	NEURON module

NEST module

	
class bsb.simulators.nest.NestAdapter

	Interface between the scaffold model and the NEST simulator.

	
broadcast(data, root=0)

	Broadcast data over MPI

	
collect_output(simulator)

	Collect the output of a simulation that completed

	
connect_neurons()

	Connect the cells in NEST according to the connection model configurations

	
create_devices()

	Create the configured NEST devices in the simulator

	
create_model(cell_model)

	Create a NEST cell model in the simulator based on a cell model configuration.

	
create_neurons()

	Create a population of nodes in the NEST simulator based on the cell model
configurations.

	
create_synapse_model(connection_model)

	Create a NEST synapse model in the simulator based on a synapse model configuration.

	
get_rank()

	Return the rank of the current node.

	
get_size()

	Return the size of the collection of all distributed nodes.

	
prepare()

	This method turns a stored HDF5 network architecture and returns a runnable simulator.

	Returns

	A simulator prepared to run a simulation according to the given configuration.

	
simulate(simulator)

	Start a simulation given a simulator object.

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.simulators.nest.NestCell(adapter)

	
	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.simulators.nest.NestConnection(adapter)

	
	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.simulators.nest.NestDevice(adapter)

	
	
get_nest_targets()

	Return the targets of the stimulation to pass into the nest.Connect call.

	
validate()

	Must be implemented by child classes. Raise exceptions when invalid configuration parameters
are received.

	
class bsb.simulators.nest.NestEntity(adapter)

	

NEURON module

Trees module

	
class bsb.trees.TreeCollection(name, handler)

	Keeps track of a collection of KDTrees in cooperation with a TreeHandler.

	
bsb.trees.is_valid_tree_name(name)

	Validate whether a given string is fit to be the name of a tree in a TreeCollection.
Must not contain any plus signs, parentheses or colons.

Voxels module

	
class bsb.voxels.HitDetector(detector)

	Wrapper class for commonly used hit detectors in the voxelization process.

	
classmethod for_rtree(tree)

	Factory function that creates a hit detector for the given morphology.

	Parameters

	morphology (TrueMorphology) – A morphology.

	Returns

	A hit detector

	Return type

	HitDetector

	
bsb.voxels.detect_box_compartments(tree, box_origin, box_size)

	Given a tree of compartment locations and a box, it will return the ids of all compartments in the outer sphere of the box

	Parameters

	box_origin – The lowermost corner of the box.

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	AdapterError, [1]

 	add_parser_globals() (bsb.cli.ReplState method)

 	add_subparser() (bsb.cli.ReplState method)

 	add_y_axis() (in module bsb.functions)

 	AllToAll (class in bsb.connectivity)

 	apply_2d_bounds() (in module bsb.functions)

 	
 	ArborError, [1]

 	AscendingAxonLengths (class in bsb.postprocessing)

 	assert_attr_array() (in module bsb.helpers)

 	assert_attr_in() (in module bsb.helpers)

 	attach_child() (bsb.morphologies.Branch method)

 	AttributeMissingError, [1]

B

 	
 	BidirectionalContact (class in bsb.postprocessing)

 	Branch (class in bsb.morphologies)

 	branch_iter() (in module bsb.morphologies)

 	branches (bsb.morphologies.Morphology property)

 	broadcast() (bsb.simulators.nest.NestAdapter method)

 	
 bsb.cli

 	module

 	
 bsb.connectivity

 	module

 	
 bsb.exceptions

 	module

 	
 bsb.functions

 	module

 	
 bsb.helpers

 	module

 	
 bsb.models

 	module

 	
 bsb.morphologies

 	module

 	
 	
 bsb.networks

 	module

 	
 bsb.output

 	module

 	
 bsb.placement

 	module

 	
 bsb.plotting

 	module

 	
 bsb.postprocessing

 	module

 	
 bsb.simulation

 	module

 	
 bsb.simulators.nest

 	module

 	
 bsb.trees

 	module

 	
 bsb.voxels

 	module

C

 	
 	cast_config() (bsb.helpers.ConfigurableClass method)

 	CastableConfigurableClass (class in bsb.helpers)

 	CastConfigurationError, [1]

 	CastError, [1]

 	cells (bsb.models.PlacementSet property)

 	CellType (class in bsb.models)

 	CerebellumLabels (class in bsb.postprocessing)

 	check_positive_factory() (in module bsb.cli)

 	children (bsb.morphologies.Branch property)

 	CircularMorphologyError, [1]

 	ClassError, [1]

 	clear_prefix() (bsb.cli.ReplState method)

 	close_hdf5() (bsb.cli.ReplState method)

 	collect_output() (bsb.simulators.nest.NestAdapter method)

 	Compartment (class in bsb.morphologies)

 	CompartmentError, [1]

 	compute_circle() (in module bsb.functions)

 	compute_intersection_slice() (in module bsb.functions)

 	ConfigurableCastError, [1]

 	ConfigurableClass (class in bsb.helpers)

 	ConfigurableClassNotFoundError, [1]

 	ConfigurationError, [1]

 	ConfigurationFormatError, [1]

 	ConfigurationWarning, [1]

 	connect_neurons() (bsb.simulators.nest.NestAdapter method)

 	connection_types (bsb.models.ConnectivitySet property)

 	connections (bsb.models.ConnectivitySet property)

 	ConnectionStrategy (class in bsb.connectivity)

 	ConnectivityError, [1]

 	
 	ConnectivitySet (class in bsb.models)

 	ConnectivityWarning, [1]

 	ConnectomeAscAxonPurkinje (class in bsb.connectivity)

 	ConnectomeBCSCPurkinje (class in bsb.connectivity)

 	ConnectomeDcnGlyGolgi (class in bsb.connectivity)

 	ConnectomeDcnGolgi (class in bsb.connectivity)

 	ConnectomeDcnGranule (class in bsb.connectivity)

 	ConnectomeGapJunctions (class in bsb.connectivity)

 	ConnectomeGapJunctionsGolgi (class in bsb.connectivity)

 	ConnectomeGlomerulusGolgi (class in bsb.connectivity)

 	ConnectomeGlomerulusGranule (class in bsb.connectivity)

 	ConnectomeGolgiGlomerulus (class in bsb.connectivity)

 	ConnectomeGolgiGranule (class in bsb.connectivity)

 	ConnectomeGranuleGolgi (class in bsb.connectivity)

 	ConnectomeIOMolecular (class in bsb.connectivity)

 	ConnectomeIOPurkinje (class in bsb.connectivity)

 	ConnectomeMossyDCN (class in bsb.connectivity)

 	ConnectomeMossyGlomerulus (class in bsb.connectivity)

 	ConnectomePFInterneuron (class in bsb.connectivity)

 	ConnectomePFPurkinje (class in bsb.connectivity)

 	ConnectomePurkinjeDCN (class in bsb.connectivity)

 	continuity_hop() (in module bsb.helpers)

 	continuity_list() (in module bsb.helpers)

 	ContinuityError, [1]

 	Convergence (class in bsb.connectivity)

 	create_devices() (bsb.simulators.nest.NestAdapter method)

 	create_model() (bsb.simulators.nest.NestAdapter method)

 	create_neurons() (bsb.simulators.nest.NestAdapter method)

 	create_synapse_model() (bsb.simulators.nest.NestAdapter method)

D

 	
 	DataNotFoundError, [1]

 	DataNotProvidedError, [1]

 	DatasetNotFoundError, [1]

 	DCN_large_differentiation (class in bsb.postprocessing)

 	DCNRotations (class in bsb.postprocessing)

 	
 	destroy_globals() (bsb.cli.ReplState method)

 	detach_child() (bsb.morphologies.Branch method)

 	detect_box_compartments() (in module bsb.voxels)

 	DeviceConnectionError, [1]

 	DistributionConfiguration (class in bsb.helpers)

 	DynamicClassError, [1]

E

 	
 	EvalConfiguration (class in bsb.helpers)

 	exclude_index() (in module bsb.functions)

 	exists() (bsb.output.HDF5Formatter method)

 	(bsb.output.OutputFormatter method)

 	
 	exit_repl() (bsb.cli.ReplState method)

 	expand_continuity_list() (in module bsb.helpers)

 	ExternalConnections (class in bsb.connectivity)

 	ExternalSourceError, [1]

F

 	
 	fallback (bsb.helpers.DistributionConfiguration attribute)

 	(bsb.helpers.FloatEvalConfiguration attribute)

 	(bsb.helpers.ListEvalConfiguration attribute)

 	FiberIntersection (class in bsb.connectivity)

 	FiberTransform (class in bsb.connectivity)

 	
 	flatten() (bsb.morphologies.Morphology method)

 	FloatEvalConfiguration (class in bsb.helpers)

 	for_rtree() (bsb.voxels.HitDetector class method)

 	from_identifiers (bsb.models.ConnectivitySet property)

 	from_template() (bsb.morphologies.Compartment class method)

G

 	
 	get_branches() (bsb.morphologies.Morphology method)

 	get_candidate_points() (in module bsb.functions)

 	get_cells_of_type() (bsb.output.HDF5Formatter method)

 	(bsb.output.OutputFormatter method)

 	get_connectivity_set() (bsb.output.HDF5Formatter method)

 	(bsb.output.OutputFormatter method)

 	get_connectivity_set_connection_types() (bsb.output.HDF5Formatter method)

 	(bsb.output.OutputFormatter method)

 	get_connectivity_set_meta() (bsb.output.HDF5Formatter method)

 	(bsb.output.OutputFormatter method)

 	get_connectivity_sets() (bsb.output.HDF5Formatter method)

 	(bsb.output.OutputFormatter method)

 	get_distances() (in module bsb.functions)

 	
 	get_handle() (bsb.output.HDF5ResourceHandler method)

 	(bsb.output.MorphologyRepository method)

 	(bsb.output.ResourceHandler method)

 	get_morphology() (bsb.output.MorphologyRepository method)

 	get_nest_targets() (bsb.simulators.nest.NestDevice method)

 	get_postsynaptic_types() (bsb.models.ConnectivitySet method)

 	get_presynaptic_types() (bsb.models.ConnectivitySet method)

 	get_rank() (bsb.simulators.nest.NestAdapter method)

 	get_simulator_output_path() (bsb.output.HDF5Formatter method)

 	(bsb.output.OutputFormatter method)

 	get_size() (bsb.simulators.nest.NestAdapter method)

 	GolgiCellGeometry (class in bsb.morphologies)

 	GranuleCellGeometry (class in bsb.morphologies)

H

 	
 	has_cells_of_type() (bsb.output.HDF5Formatter method)

 	(bsb.output.OutputFormatter method)

 	has_compartment_data() (bsb.models.ConnectivitySet method)

 	hdf5_gdf_plot_spike_raster() (in module bsb.plotting)

 	
 	hdf5_plot_spike_raster() (in module bsb.plotting)

 	HDF5Formatter (class in bsb.output)

 	HDF5ResourceHandler (class in bsb.output)

 	HDF5TreeHandler (class in bsb.output)

 	HitDetector (class in bsb.voxels)

I

 	
 	identifiers (bsb.models.PlacementSet property)

 	import_arbz() (bsb.output.MorphologyRepository method)

 	import_swc() (bsb.output.MorphologyRepository method)

 	IncompleteExternalMapError, [1]

 	IncompleteMorphologyError, [1]

 	init_scaffold() (bsb.output.HDF5Formatter method)

 	(bsb.output.OutputFormatter method)

 	
 	intersect_voxel_tree() (bsb.connectivity.FiberIntersection method)

 	IntersectionDataNotFoundError, [1]

 	intersections (bsb.models.ConnectivitySet property)

 	InvalidDistributionError, [1]

 	is_valid_tree_name() (in module bsb.trees)

 	iterate_continuity_list() (in module bsb.helpers)

K

 	
 	KernelLockedError, [1]

 	
 	KernelWarning, [1]

L

 	
 	label() (bsb.morphologies.Branch method)

 	label_points() (bsb.morphologies.Branch method)

 	label_walk() (bsb.morphologies.Branch method)

 	LabelMicrozones (class in bsb.postprocessing)

 	Layer (class in bsb.models)

 	
 	LayerNotFoundError, [1]

 	list_all_morphologies() (bsb.models.CellType method)

 	list_morphologies() (bsb.output.MorphologyRepository method)

 	ListEvalConfiguration (class in bsb.helpers)

 	listify_input() (in module bsb.helpers)

M

 	
 	meta (bsb.models.ConnectivitySet property)

 	MissingAxon (class in bsb.postprocessing)

 	MissingMorphologyError, [1]

 	MissingSourceError, [1]

 	
 module

 	bsb.cli

 	bsb.connectivity

 	bsb.exceptions

 	bsb.functions

 	bsb.helpers

 	bsb.models

 	bsb.morphologies

 	bsb.networks

 	bsb.output

 	bsb.placement

 	bsb.plotting

 	bsb.postprocessing

 	bsb.simulation

 	bsb.simulators.nest

 	bsb.trees

 	bsb.voxels

 	
 	Morphology (class in bsb.morphologies)

 	MorphologyCache (class in bsb.output)

 	MorphologyDataError, [1]

 	MorphologyError, [1]

 	MorphologyRepository (class in bsb.output)

 	MorphologyRepositoryError, [1]

 	MorphologyWarning, [1]

N

 	
 	NestAdapter (class in bsb.simulators.nest)

 	NestCell (class in bsb.simulators.nest)

 	NestConnection (class in bsb.simulators.nest)

 	NestDevice (class in bsb.simulators.nest)

 	NestEntity (class in bsb.simulators.nest)

 	NestError, [1]

 	
 	NestKernelError, [1]

 	NestModelError, [1]

 	NestModuleError, [1]

 	NeuronError, [1]

 	NilCompartment (class in bsb.morphologies)

 	NoGeometry (class in bsb.morphologies)

O

 	
 	open_hdf5() (bsb.cli.ReplState method)

 	open_morphology_repository() (bsb.cli.ReplState method)

 	
 	OptionallyCastable (class in bsb.helpers)

 	OrderError, [1]

 	OutputFormatter (class in bsb.output)

P

 	
 	ParallelIntegrityError, [1]

 	ParseError

 	place() (bsb.models.CellType method)

 	PlacementError, [1]

 	PlacementSet (class in bsb.models)

 	PlacementWarning, [1]

 	
 	plot_network() (in module bsb.plotting)

 	points (bsb.morphologies.Branch property)

 	poisson_train() (in module bsb.functions)

 	positions (bsb.models.PlacementSet property)

 	PostProcessingHook (class in bsb.postprocessing)

 	prepare() (bsb.simulators.nest.NestAdapter method)

 	PurkinjeCellGeometry (class in bsb.morphologies)

Q

 	
 	QuiverFieldWarning, [1]

 	
 	QuiverTransform (class in bsb.connectivity)

R

 	
 	RadialGeometry (class in bsb.morphologies)

 	ReceptorSpecificationError, [1]

 	reduce_branch() (in module bsb.networks)

 	RelayError, [1]

 	release_handle() (bsb.output.HDF5ResourceHandler method)

 	(bsb.output.ResourceHandler method)

 	repl() (bsb.cli.ReplState method)

 	repl_plot_morphology() (in module bsb.cli)

 	repl_view_hdf5() (in module bsb.cli)

 	
 	repl_voxelize() (in module bsb.cli)

 	ReplState (class in bsb.cli)

 	report() (in module bsb.connectivity)

 	RepositoryWarning, [1]

 	Representation (class in bsb.morphologies)

 	ResourceError, [1]

 	ResourceHandler (class in bsb.output)

 	rotate() (bsb.morphologies.Morphology method)

 	rotate_all_morphologies() (bsb.output.MorphologyCache method)

 	rotations (bsb.models.PlacementSet property)

S

 	
 	SatelliteCommonPresynaptic (class in bsb.connectivity)

 	scaffold_cli() (in module bsb.cli)

 	ScaffoldError, [1]

 	ScaffoldWarning, [1]

 	scale_to_reference() (bsb.models.Layer method)

 	set_morphology() (bsb.models.CellType method)

 	set_morphology_scene_range() (in module bsb.plotting)

 	set_next_state() (bsb.cli.ReplState method)

 	set_parser_base_hdf5_state() (bsb.cli.ReplState method)

 	set_parser_base_mr_state() (bsb.cli.ReplState method)

 	set_parser_base_state() (bsb.cli.ReplState method)

 	
 	set_placement() (bsb.models.CellType method)

 	set_reply() (bsb.cli.ReplState method)

 	simulate() (bsb.simulators.nest.NestAdapter method)

 	SimulationNotFoundError, [1]

 	SimulationWarning, [1]

 	size (bsb.morphologies.Branch property)

 	SourceQualityError, [1]

 	SpatialDimensionError, [1]

 	SpoofDetails (class in bsb.postprocessing)

 	start_cli() (in module bsb.cli)

 	start_repl() (in module bsb.cli)

 	SuffixTakenError, [1]

T

 	
 	terminal (bsb.morphologies.Branch property)

 	to_compartments() (bsb.morphologies.Branch method)

 	(bsb.morphologies.Morphology method)

 	to_identifiers (bsb.models.ConnectivitySet property)

 	TouchDetector (class in bsb.connectivity)

 	TouchingConvergenceDivergence (class in bsb.connectivity)

 	
 	transform_branch() (bsb.connectivity.QuiverTransform method)

 	TransmitterError, [1]

 	TreeCollection (class in bsb.trees)

 	TreeError, [1]

 	TreeHandler (class in bsb.output)

 	TypeNotFoundError, [1]

U

 	
 	UnionCastError, [1]

 	UnknownDistributionError, [1]

 	
 	UnknownGIDError, [1]

 	update_parser() (bsb.cli.ReplState method)

 	UserUserDeprecationWarning, [1]

V

 	
 	validate() (bsb.connectivity.AllToAll method)

 	(bsb.connectivity.ConnectomeAscAxonPurkinje method)

 	(bsb.connectivity.ConnectomeBCSCPurkinje method)

 	(bsb.connectivity.ConnectomeDcnGlyGolgi method)

 	(bsb.connectivity.ConnectomeDcnGolgi method)

 	(bsb.connectivity.ConnectomeDcnGranule method)

 	(bsb.connectivity.ConnectomeGapJunctions method)

 	(bsb.connectivity.ConnectomeGapJunctionsGolgi method)

 	(bsb.connectivity.ConnectomeGlomerulusGolgi method)

 	(bsb.connectivity.ConnectomeGlomerulusGranule method)

 	(bsb.connectivity.ConnectomeGolgiGlomerulus method)

 	(bsb.connectivity.ConnectomeGolgiGranule method)

 	(bsb.connectivity.ConnectomeGranuleGolgi method)

 	(bsb.connectivity.ConnectomeIOMolecular method)

 	(bsb.connectivity.ConnectomeIOPurkinje method)

 	(bsb.connectivity.ConnectomeMossyDCN method)

 	(bsb.connectivity.ConnectomeMossyGlomerulus method)

 	(bsb.connectivity.ConnectomePFInterneuron method)

 	(bsb.connectivity.ConnectomePFPurkinje method)

 	(bsb.connectivity.ConnectomePurkinjeDCN method)

 	(bsb.connectivity.Convergence method)

 	(bsb.connectivity.ExternalConnections method)

 	(bsb.connectivity.FiberIntersection method)

 	(bsb.connectivity.QuiverTransform method)

 	(bsb.connectivity.SatelliteCommonPresynaptic method)

 	(bsb.connectivity.TouchDetector method)

 	(bsb.connectivity.TouchingConvergenceDivergence method)

 	(bsb.connectivity.VoxelIntersection method)

 	(bsb.helpers.ConfigurableClass method)

 	(bsb.helpers.DistributionConfiguration method)

 	(bsb.helpers.EvalConfiguration method)

 	(bsb.models.CellType method)

 	(bsb.morphologies.GolgiCellGeometry method)

 	(bsb.morphologies.GranuleCellGeometry method)

 	(bsb.morphologies.NoGeometry method)

 	(bsb.morphologies.PurkinjeCellGeometry method)

 	(bsb.morphologies.RadialGeometry method)

 	(bsb.output.HDF5Formatter method)

 	(bsb.postprocessing.MissingAxon method)

 	(bsb.postprocessing.PostProcessingHook method)

 	(bsb.simulators.nest.NestAdapter method)

 	(bsb.simulators.nest.NestCell method)

 	(bsb.simulators.nest.NestConnection method)

 	(bsb.simulators.nest.NestDevice method)

 	
 	VoxelIntersection (class in bsb.connectivity)

 	VoxelizationError, [1]

 	VoxelTransformError, [1]

W

 	
 	walk() (bsb.morphologies.Branch method)

 	
 	warn() (in module bsb.connectivity)

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 bsb	

 	
 	
 bsb.cli	

 	
 	
 bsb.connectivity	

 	
 	
 bsb.exceptions	

 	
 	
 bsb.functions	

 	
 	
 bsb.helpers	

 	
 	
 bsb.models	

 	
 	
 bsb.morphologies	

 	
 	
 bsb.networks	

 	
 	
 bsb.output	

 	
 	
 bsb.placement	

 	
 	
 bsb.plotting	

 	
 	
 bsb.postprocessing	

 	
 	
 bsb.simulation	

 	
 	
 bsb.simulators.nest	

 	
 	
 bsb.trees	

 	
 	
 bsb.voxels	

Developer Installation

To install:

git clone git@github.com:dbbs-lab/bsb
cd bsb
pip install -e .[dev]
pre-commit install

Test your install with:

python -m unittest discover -s tests

Documentation

To build the documentation run:

cd docs
make html

Conventions

	Values are marked as 5 or "hello" using double backticks (`` ``).

	Configuration attributes are marked as attribute using the guilabel
directive (:guilabel:`attribute`)

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 bsb	

 	
 	
 bsb.cli	

 	
 	
 bsb.connectivity	

 	
 	
 bsb.exceptions	

 	
 	
 bsb.functions	

 	
 	
 bsb.helpers	

 	
 	
 bsb.models	

 	
 	
 bsb.morphologies	

 	
 	
 bsb.networks	

 	
 	
 bsb.output	

 	
 	
 bsb.placement	

 	
 	
 bsb.plotting	

 	
 	
 bsb.postprocessing	

 	
 	
 bsb.simulation	

 	
 	
 bsb.simulators.nest	

 	
 	
 bsb.trees	

 	
 	
 bsb.voxels	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	AdapterError, [1]

 	add_parser_globals() (bsb.cli.ReplState method)

 	add_subparser() (bsb.cli.ReplState method)

 	add_y_axis() (in module bsb.functions)

 	AllToAll (class in bsb.connectivity)

 	apply_2d_bounds() (in module bsb.functions)

 	
 	ArborError, [1]

 	AscendingAxonLengths (class in bsb.postprocessing)

 	assert_attr_array() (in module bsb.helpers)

 	assert_attr_in() (in module bsb.helpers)

 	attach_child() (bsb.morphologies.Branch method)

 	AttributeMissingError, [1]

B

 	
 	BidirectionalContact (class in bsb.postprocessing)

 	Branch (class in bsb.morphologies)

 	branch_iter() (in module bsb.morphologies)

 	branches (bsb.morphologies.Morphology property)

 	broadcast() (bsb.simulators.nest.NestAdapter method)

 	
 bsb.cli

 	module

 	
 bsb.connectivity

 	module

 	
 bsb.exceptions

 	module

 	
 bsb.functions

 	module

 	
 bsb.helpers

 	module

 	
 bsb.models

 	module

 	
 bsb.morphologies

 	module

 	
 	
 bsb.networks

 	module

 	
 bsb.output

 	module

 	
 bsb.placement

 	module

 	
 bsb.plotting

 	module

 	
 bsb.postprocessing

 	module

 	
 bsb.simulation

 	module

 	
 bsb.simulators.nest

 	module

 	
 bsb.trees

 	module

 	
 bsb.voxels

 	module

C

 	
 	cast_config() (bsb.helpers.ConfigurableClass method)

 	CastableConfigurableClass (class in bsb.helpers)

 	CastConfigurationError, [1]

 	CastError, [1]

 	cells (bsb.models.PlacementSet property)

 	CellType (class in bsb.models)

 	CerebellumLabels (class in bsb.postprocessing)

 	check_positive_factory() (in module bsb.cli)

 	children (bsb.morphologies.Branch property)

 	CircularMorphologyError, [1]

 	ClassError, [1]

 	clear_prefix() (bsb.cli.ReplState method)

 	close_hdf5() (bsb.cli.ReplState method)

 	collect_output() (bsb.simulators.nest.NestAdapter method)

 	Compartment (class in bsb.morphologies)

 	CompartmentError, [1]

 	compute_circle() (in module bsb.functions)

 	compute_intersection_slice() (in module bsb.functions)

 	ConfigurableCastError, [1]

 	ConfigurableClass (class in bsb.helpers)

 	ConfigurableClassNotFoundError, [1]

 	ConfigurationError, [1]

 	ConfigurationFormatError, [1]

 	ConfigurationWarning, [1]

 	connect_neurons() (bsb.simulators.nest.NestAdapter method)

 	connection_types (bsb.models.ConnectivitySet property)

 	connections (bsb.models.ConnectivitySet property)

 	ConnectionStrategy (class in bsb.connectivity)

 	ConnectivityError, [1]

 	
 	ConnectivitySet (class in bsb.models)

 	ConnectivityWarning, [1]

 	ConnectomeAscAxonPurkinje (class in bsb.connectivity)

 	ConnectomeBCSCPurkinje (class in bsb.connectivity)

 	ConnectomeDcnGlyGolgi (class in bsb.connectivity)

 	ConnectomeDcnGolgi (class in bsb.connectivity)

 	ConnectomeDcnGranule (class in bsb.connectivity)

 	ConnectomeGapJunctions (class in bsb.connectivity)

 	ConnectomeGapJunctionsGolgi (class in bsb.connectivity)

 	ConnectomeGlomerulusGolgi (class in bsb.connectivity)

 	ConnectomeGlomerulusGranule (class in bsb.connectivity)

 	ConnectomeGolgiGlomerulus (class in bsb.connectivity)

 	ConnectomeGolgiGranule (class in bsb.connectivity)

 	ConnectomeGranuleGolgi (class in bsb.connectivity)

 	ConnectomeIOMolecular (class in bsb.connectivity)

 	ConnectomeIOPurkinje (class in bsb.connectivity)

 	ConnectomeMossyDCN (class in bsb.connectivity)

 	ConnectomeMossyGlomerulus (class in bsb.connectivity)

 	ConnectomePFInterneuron (class in bsb.connectivity)

 	ConnectomePFPurkinje (class in bsb.connectivity)

 	ConnectomePurkinjeDCN (class in bsb.connectivity)

 	continuity_hop() (in module bsb.helpers)

 	continuity_list() (in module bsb.helpers)

 	ContinuityError, [1]

 	Convergence (class in bsb.connectivity)

 	create_devices() (bsb.simulators.nest.NestAdapter method)

 	create_model() (bsb.simulators.nest.NestAdapter method)

 	create_neurons() (bsb.simulators.nest.NestAdapter method)

 	create_synapse_model() (bsb.simulators.nest.NestAdapter method)

D

 	
 	DataNotFoundError, [1]

 	DataNotProvidedError, [1]

 	DatasetNotFoundError, [1]

 	DCN_large_differentiation (class in bsb.postprocessing)

 	DCNRotations (class in bsb.postprocessing)

 	
 	destroy_globals() (bsb.cli.ReplState method)

 	detach_child() (bsb.morphologies.Branch method)

 	detect_box_compartments() (in module bsb.voxels)

 	DeviceConnectionError, [1]

 	DistributionConfiguration (class in bsb.helpers)

 	DynamicClassError, [1]

E

 	
 	EvalConfiguration (class in bsb.helpers)

 	exclude_index() (in module bsb.functions)

 	exists() (bsb.output.HDF5Formatter method)

 	(bsb.output.OutputFormatter method)

 	
 	exit_repl() (bsb.cli.ReplState method)

 	expand_continuity_list() (in module bsb.helpers)

 	ExternalConnections (class in bsb.connectivity)

 	ExternalSourceError, [1]

F

 	
 	fallback (bsb.helpers.DistributionConfiguration attribute)

 	(bsb.helpers.FloatEvalConfiguration attribute)

 	(bsb.helpers.ListEvalConfiguration attribute)

 	FiberIntersection (class in bsb.connectivity)

 	FiberTransform (class in bsb.connectivity)

 	
 	flatten() (bsb.morphologies.Morphology method)

 	FloatEvalConfiguration (class in bsb.helpers)

 	for_rtree() (bsb.voxels.HitDetector class method)

 	from_identifiers (bsb.models.ConnectivitySet property)

 	from_template() (bsb.morphologies.Compartment class method)

G

 	
 	get_branches() (bsb.morphologies.Morphology method)

 	get_candidate_points() (in module bsb.functions)

 	get_cells_of_type() (bsb.output.HDF5Formatter method)

 	(bsb.output.OutputFormatter method)

 	get_connectivity_set() (bsb.output.HDF5Formatter method)

 	(bsb.output.OutputFormatter method)

 	get_connectivity_set_connection_types() (bsb.output.HDF5Formatter method)

 	(bsb.output.OutputFormatter method)

 	get_connectivity_set_meta() (bsb.output.HDF5Formatter method)

 	(bsb.output.OutputFormatter method)

 	get_connectivity_sets() (bsb.output.HDF5Formatter method)

 	(bsb.output.OutputFormatter method)

 	get_distances() (in module bsb.functions)

 	
 	get_handle() (bsb.output.HDF5ResourceHandler method)

 	(bsb.output.MorphologyRepository method)

 	(bsb.output.ResourceHandler method)

 	get_morphology() (bsb.output.MorphologyRepository method)

 	get_nest_targets() (bsb.simulators.nest.NestDevice method)

 	get_postsynaptic_types() (bsb.models.ConnectivitySet method)

 	get_presynaptic_types() (bsb.models.ConnectivitySet method)

 	get_rank() (bsb.simulators.nest.NestAdapter method)

 	get_simulator_output_path() (bsb.output.HDF5Formatter method)

 	(bsb.output.OutputFormatter method)

 	get_size() (bsb.simulators.nest.NestAdapter method)

 	GolgiCellGeometry (class in bsb.morphologies)

 	GranuleCellGeometry (class in bsb.morphologies)

H

 	
 	has_cells_of_type() (bsb.output.HDF5Formatter method)

 	(bsb.output.OutputFormatter method)

 	has_compartment_data() (bsb.models.ConnectivitySet method)

 	hdf5_gdf_plot_spike_raster() (in module bsb.plotting)

 	
 	hdf5_plot_spike_raster() (in module bsb.plotting)

 	HDF5Formatter (class in bsb.output)

 	HDF5ResourceHandler (class in bsb.output)

 	HDF5TreeHandler (class in bsb.output)

 	HitDetector (class in bsb.voxels)

I

 	
 	identifiers (bsb.models.PlacementSet property)

 	import_arbz() (bsb.output.MorphologyRepository method)

 	import_swc() (bsb.output.MorphologyRepository method)

 	IncompleteExternalMapError, [1]

 	IncompleteMorphologyError, [1]

 	init_scaffold() (bsb.output.HDF5Formatter method)

 	(bsb.output.OutputFormatter method)

 	
 	intersect_voxel_tree() (bsb.connectivity.FiberIntersection method)

 	IntersectionDataNotFoundError, [1]

 	intersections (bsb.models.ConnectivitySet property)

 	InvalidDistributionError, [1]

 	is_valid_tree_name() (in module bsb.trees)

 	iterate_continuity_list() (in module bsb.helpers)

K

 	
 	KernelLockedError, [1]

 	
 	KernelWarning, [1]

L

 	
 	label() (bsb.morphologies.Branch method)

 	label_points() (bsb.morphologies.Branch method)

 	label_walk() (bsb.morphologies.Branch method)

 	LabelMicrozones (class in bsb.postprocessing)

 	Layer (class in bsb.models)

 	
 	LayerNotFoundError, [1]

 	list_all_morphologies() (bsb.models.CellType method)

 	list_morphologies() (bsb.output.MorphologyRepository method)

 	ListEvalConfiguration (class in bsb.helpers)

 	listify_input() (in module bsb.helpers)

M

 	
 	meta (bsb.models.ConnectivitySet property)

 	MissingAxon (class in bsb.postprocessing)

 	MissingMorphologyError, [1]

 	MissingSourceError, [1]

 	
 module

 	bsb.cli

 	bsb.connectivity

 	bsb.exceptions

 	bsb.functions

 	bsb.helpers

 	bsb.models

 	bsb.morphologies

 	bsb.networks

 	bsb.output

 	bsb.placement

 	bsb.plotting

 	bsb.postprocessing

 	bsb.simulation

 	bsb.simulators.nest

 	bsb.trees

 	bsb.voxels

 	
 	Morphology (class in bsb.morphologies)

 	MorphologyCache (class in bsb.output)

 	MorphologyDataError, [1]

 	MorphologyError, [1]

 	MorphologyRepository (class in bsb.output)

 	MorphologyRepositoryError, [1]

 	MorphologyWarning, [1]

N

 	
 	NestAdapter (class in bsb.simulators.nest)

 	NestCell (class in bsb.simulators.nest)

 	NestConnection (class in bsb.simulators.nest)

 	NestDevice (class in bsb.simulators.nest)

 	NestEntity (class in bsb.simulators.nest)

 	NestError, [1]

 	
 	NestKernelError, [1]

 	NestModelError, [1]

 	NestModuleError, [1]

 	NeuronError, [1]

 	NilCompartment (class in bsb.morphologies)

 	NoGeometry (class in bsb.morphologies)

O

 	
 	open_hdf5() (bsb.cli.ReplState method)

 	open_morphology_repository() (bsb.cli.ReplState method)

 	
 	OptionallyCastable (class in bsb.helpers)

 	OrderError, [1]

 	OutputFormatter (class in bsb.output)

P

 	
 	ParallelIntegrityError, [1]

 	ParseError

 	place() (bsb.models.CellType method)

 	PlacementError, [1]

 	PlacementSet (class in bsb.models)

 	PlacementWarning, [1]

 	
 	plot_network() (in module bsb.plotting)

 	points (bsb.morphologies.Branch property)

 	poisson_train() (in module bsb.functions)

 	positions (bsb.models.PlacementSet property)

 	PostProcessingHook (class in bsb.postprocessing)

 	prepare() (bsb.simulators.nest.NestAdapter method)

 	PurkinjeCellGeometry (class in bsb.morphologies)

Q

 	
 	QuiverFieldWarning, [1]

 	
 	QuiverTransform (class in bsb.connectivity)

R

 	
 	RadialGeometry (class in bsb.morphologies)

 	ReceptorSpecificationError, [1]

 	reduce_branch() (in module bsb.networks)

 	RelayError, [1]

 	release_handle() (bsb.output.HDF5ResourceHandler method)

 	(bsb.output.ResourceHandler method)

 	repl() (bsb.cli.ReplState method)

 	repl_plot_morphology() (in module bsb.cli)

 	repl_view_hdf5() (in module bsb.cli)

 	
 	repl_voxelize() (in module bsb.cli)

 	ReplState (class in bsb.cli)

 	report() (in module bsb.connectivity)

 	RepositoryWarning, [1]

 	Representation (class in bsb.morphologies)

 	ResourceError, [1]

 	ResourceHandler (class in bsb.output)

 	rotate() (bsb.morphologies.Morphology method)

 	rotate_all_morphologies() (bsb.output.MorphologyCache method)

 	rotations (bsb.models.PlacementSet property)

S

 	
 	SatelliteCommonPresynaptic (class in bsb.connectivity)

 	scaffold_cli() (in module bsb.cli)

 	ScaffoldError, [1]

 	ScaffoldWarning, [1]

 	scale_to_reference() (bsb.models.Layer method)

 	set_morphology() (bsb.models.CellType method)

 	set_morphology_scene_range() (in module bsb.plotting)

 	set_next_state() (bsb.cli.ReplState method)

 	set_parser_base_hdf5_state() (bsb.cli.ReplState method)

 	set_parser_base_mr_state() (bsb.cli.ReplState method)

 	set_parser_base_state() (bsb.cli.ReplState method)

 	
 	set_placement() (bsb.models.CellType method)

 	set_reply() (bsb.cli.ReplState method)

 	simulate() (bsb.simulators.nest.NestAdapter method)

 	SimulationNotFoundError, [1]

 	SimulationWarning, [1]

 	size (bsb.morphologies.Branch property)

 	SourceQualityError, [1]

 	SpatialDimensionError, [1]

 	SpoofDetails (class in bsb.postprocessing)

 	start_cli() (in module bsb.cli)

 	start_repl() (in module bsb.cli)

 	SuffixTakenError, [1]

T

 	
 	terminal (bsb.morphologies.Branch property)

 	to_compartments() (bsb.morphologies.Branch method)

 	(bsb.morphologies.Morphology method)

 	to_identifiers (bsb.models.ConnectivitySet property)

 	TouchDetector (class in bsb.connectivity)

 	TouchingConvergenceDivergence (class in bsb.connectivity)

 	
 	transform_branch() (bsb.connectivity.QuiverTransform method)

 	TransmitterError, [1]

 	TreeCollection (class in bsb.trees)

 	TreeError, [1]

 	TreeHandler (class in bsb.output)

 	TypeNotFoundError, [1]

U

 	
 	UnionCastError, [1]

 	UnknownDistributionError, [1]

 	
 	UnknownGIDError, [1]

 	update_parser() (bsb.cli.ReplState method)

 	UserUserDeprecationWarning, [1]

V

 	
 	validate() (bsb.connectivity.AllToAll method)

 	(bsb.connectivity.ConnectomeAscAxonPurkinje method)

 	(bsb.connectivity.ConnectomeBCSCPurkinje method)

 	(bsb.connectivity.ConnectomeDcnGlyGolgi method)

 	(bsb.connectivity.ConnectomeDcnGolgi method)

 	(bsb.connectivity.ConnectomeDcnGranule method)

 	(bsb.connectivity.ConnectomeGapJunctions method)

 	(bsb.connectivity.ConnectomeGapJunctionsGolgi method)

 	(bsb.connectivity.ConnectomeGlomerulusGolgi method)

 	(bsb.connectivity.ConnectomeGlomerulusGranule method)

 	(bsb.connectivity.ConnectomeGolgiGlomerulus method)

 	(bsb.connectivity.ConnectomeGolgiGranule method)

 	(bsb.connectivity.ConnectomeGranuleGolgi method)

 	(bsb.connectivity.ConnectomeIOMolecular method)

 	(bsb.connectivity.ConnectomeIOPurkinje method)

 	(bsb.connectivity.ConnectomeMossyDCN method)

 	(bsb.connectivity.ConnectomeMossyGlomerulus method)

 	(bsb.connectivity.ConnectomePFInterneuron method)

 	(bsb.connectivity.ConnectomePFPurkinje method)

 	(bsb.connectivity.ConnectomePurkinjeDCN method)

 	(bsb.connectivity.Convergence method)

 	(bsb.connectivity.ExternalConnections method)

 	(bsb.connectivity.FiberIntersection method)

 	(bsb.connectivity.QuiverTransform method)

 	(bsb.connectivity.SatelliteCommonPresynaptic method)

 	(bsb.connectivity.TouchDetector method)

 	(bsb.connectivity.TouchingConvergenceDivergence method)

 	(bsb.connectivity.VoxelIntersection method)

 	(bsb.helpers.ConfigurableClass method)

 	(bsb.helpers.DistributionConfiguration method)

 	(bsb.helpers.EvalConfiguration method)

 	(bsb.models.CellType method)

 	(bsb.morphologies.GolgiCellGeometry method)

 	(bsb.morphologies.GranuleCellGeometry method)

 	(bsb.morphologies.NoGeometry method)

 	(bsb.morphologies.PurkinjeCellGeometry method)

 	(bsb.morphologies.RadialGeometry method)

 	(bsb.output.HDF5Formatter method)

 	(bsb.postprocessing.MissingAxon method)

 	(bsb.postprocessing.PostProcessingHook method)

 	(bsb.simulators.nest.NestAdapter method)

 	(bsb.simulators.nest.NestCell method)

 	(bsb.simulators.nest.NestConnection method)

 	(bsb.simulators.nest.NestDevice method)

 	
 	VoxelIntersection (class in bsb.connectivity)

 	VoxelizationError, [1]

 	VoxelTransformError, [1]

W

 	
 	walk() (bsb.morphologies.Branch method)

 	
 	warn() (in module bsb.connectivity)

Labels

How to label neurons

After placing cells inside the scaffold model, it is possible to define postprocessing functions
that modify some features of the scaffold. For instance, it is possible to define a function
that, given a specific cell type, assigns a label to each cell belonging to that cell type
(e.g., subdivide a certain population into different subpopulations according to their position in the 3D space.)

Postprocessing functions can be configured in the after_placement dictionary of the root node of the
configuration file, specifying each postprocessing function with its name, e.g. “Labels”:

{
 "after_placement": {
 "Labels": {
 "class": "my_model.postprocessing.LabelCellA",
 "targets": ["cell_A"]
 }
 }
}

For more information on linking your Python classes to the configuration file see /config/intro.

Example of a Python class for labeling neurons.

from bsb.helpers import ConfigurableClass

class PostProcessingHook(ConfigurableClass):
 def validate(self):
 pass

 def after_placement(self):
 raise NotImplementedError(
 "`after_placement` hook not defined on " + self.__class__.__name__
)

 def after_connectivity(self):
 raise NotImplementedError(
 "`after_connectivity` hook not defined on " + self.__class__.__name__
)

class LabelCellA(PostProcessingHook):
 ''' Subdivide the cell_A population into 2 subpopulations '''

 def after_placement(self):
 ids = self.scaffold.get_cells_by_type("cell_A")[:, 0]
 number_of_cells = len(ids)
 subpopulation_1 = ids[0:int(number_of_cells/2)]
 subpopulation_2 = ids[int(number_of_cells/2):]

 self.scaffold.label_cells(
 subpopulation_1, label="cell_A_type_1",
)
 self.scaffold.label_cells(
 subpopulation_2, label="cell_A_type_2",
)

In this example, we can see that the LabelCellA class must inherit from PostProcessingHook
and it must specify a method after_placement in which the neural population cell_A is subdivided
into two populations:

	subpopulation_1 contains the ids of the first half of the population

	subpopulation_2 contains the ids of the second half of the population

Then, these ids are used to assign the labels cell_A_type_1 and cell_A_type_2 to subpopulation_1 and
subpopulation_2, respectively.

Morphology repositories

Getting Started Simulation

NEST parallel simulations

To run parallel NEST simulations with the scaffold you can rely on NEST
parallelization (
https://nest-simulator.readthedocs.io/en/stable/guides/parallel_computing.html).

Using MPI:

mpirun -np 4 scaffold simulate your_simulation --hdf5=your_scaffold.hdf5

Using OpenMP:

1. Set threads attribute of your simulation configuration to the
number of threads you want to use.

	Run your simulation with

scaffold simulate your_simulation --hdf5=your_scaffold.hdf5

 _static/minus.png

_static/plus.png

_static/file.png

_static/bsb.png

nav.xhtml

 Table of Contents

 		
 The Brain Scaffold Builder

 		
 Installation Guide

 		
 Installing for NEURON

 		
 Installing NEST

 		
 Getting Started

 		
 First steps

 		
 First script

 		
 Full code example

 		
 Network compilation

 		
 Network simulation

 		
 Full code example

 		
 Using Cell Types

 		
 Command Line Interface

 		
 Scaffold shell

 		
 Opening the shell

 		
 The base state

 		
 The morphology repository state

 		
 The HDF5 state

 		
 List of command line commands

 		
 compile

 		
 simulate

 		
 run

 		
 plot

 		
 Guides

 		
 Layers

 		
 Configuration

 		
 Scripting

 		
 Cell types

 		
 Configuration

 		
 Connection types

 		
 Creating your own

 		
 Connection types and labels

 		
 Output

 		
 Output Formats

 		
 Nearly-continuous list

 		
 Simulations

 		
 NEST

 		
 Configuration

 		
 List of placement strategies

 		
 PlacementStrategy

 		
 ParallelArrayPlacement

 		
 FixedPositions

 		
 List of connection strategies

 		
 Shared configuration attributes

 		
 Placement sets

 		
 Retrieving a PlacementSet

 		
 Identifiers

 		
 Positions

 		
 Rotations

 		
 Additional datasets

 		
 Plotting Tools

 		
 Blender

 		
 Blender mixin module

 		
 Blending

 		
 Blender HPC workflow

 		
 Cell Placement

 		
 Configuration

 		
 Cell count

 		
 Placement order

 		
 Placement Strategy

 		
 Placing cells

 		
 Labels

 		
 Morphologies

 		
 Using morphologies

 		
 Cell Connectivity

 		
 Configuration

 		
 Connecting cells

 		
 Simulating networks with the BSB

 		
 Conceptual overview

 		
 Arbor

 		
 Cell models

 		
 Connection models

 		
 Devices

 		
 NEST

 		
 NEURON

 		
 Configuration reference

 		
 Root attributes

 		
 Output attributes

 		
 Format

 		
 File

 		
 Network architecture attributes

 		
 simulation_volume_x

 		
 simulation_volume_z

 		
 Layer attributes

 		
 position

 		
 thickness

 		
 xz_scale

 		
 xz_center

 		
 stack

 		
 volume_scale

 		
 scale_from_layers

 		
 volume_dimension_ratio

 		
 Cell Type Attributes

 		
 entity

 		
 relay

 		
 placement

 		
 morphology

 		
 plotting

 		
 Example

 		
 Placement Attributes

 		
 class

 		
 Connectivity Attributes

 		
 class

 		
 from_types/to_types

 		
 Morphology attributes

 		
 Plotting attributes

 		
 color

 		
 label

 		
 Reference Guide

 		
 Command line interface module

 		
 Configuration module

 		
 Connectivity module

 		
 Exceptions module

 		
 Functions module

 		
 Helpers module

 		
 Models module

 		
 Morphologies module

 		
 Networks module

 		
 Output module

 		
 Placement module

 		
 Plotting module

 		
 Postprocessing module

 		
 Scaffold class

 		
 from_hdf5

 		
 Simulation module

 		
 Simulators

 		
 NEST module

 		
 NEURON module

 		
 Trees module

 		
 Voxels module

 		
 Index

 		
 Module Index

 		
 Developer Installation

 		
 Documentation

 		
 Conventions

