Run your first NEURON simulation¶
Note
This guide uses notions on the BSB reconstructions that are explained in Getting Started guide.
In this tutorial, we present how to configure a NEURON simulation for a multi-compartment neuron network.
Install requirements¶
NEURON is one of the supported simulators of the BSB. As for the other simulator, its adapter code is stored in a separate repository: bsb-neuron
So, you would need to install it with pip:
pip install bsb-neuron[parallel]
We will also need some model files for NEURON which you can obtain and link to bsb like so:
pip install dbbs-catalogue
BSB reconstruction for this tutorial¶
For this example, we will build a network consisting of a single layer
of
stellate_cells
connected through axon-dendrite overlap, using the strategy
VoxelIntersection.
The morphology of a custom stellate cell is provided
here
.
Please save this file in your project folder as StellateCell.swc
.
The network configuration should be as follows:
{
"name": "DBBS test stellate rand circuit v4.0",
"storage": {
"engine": "hdf5",
"root": "my_network.hdf5"
},
"network": {
"x": 100.0,
"y": 200.0,
"z": 300.0,
"chunk_size": [100, 100, 100]
},
"partitions": {
"stellate_layer": {
"thickness": 300.0
}
},
"regions": {
"example_cortex": {
"type": "stack",
"children": ["stellate_layer"]
}
},
"morphologies": [
{
"file": "StellateCell.swc",
"parser":{
"tags": {
16: ["dendrites", "proximal_dendrites"],
17: ["dendrites", "distal_dendrites"],
18: ["axon", "axon_initial_segment"]
}
}
}
],
"cell_types": {
"stellate_cell": {
"spatial": {
"radius": 4.0,
"density": 0.000005,
"morphologies": [
{
"names": ["StellateCell"]
}
]
}
}
},
"placement": {
"stellate_placement": {
"strategy": "bsb.placement.RandomPlacement",
"partitions": ["stellate_layer"],
"cell_types": ["stellate_cell"]
}
},
"connectivity": {
"stellate_to_stellate": {
"strategy": "bsb.connectivity.VoxelIntersection",
"presynaptic": {
"cell_types": ["stellate_cell"],
"morphology_labels" : ["axon"]
},
"postsynaptic": {
"cell_types": ["stellate_cell"],
"morphology_labels" : ["dendrites"]
}
}
},
import bsb.options
from bsb import Configuration, Scaffold
bsb.options.verbosity = 3
config = Configuration.default(storage={"engine": "hdf5", "root": "my_network.hdf5"})
config.network.x = 100.0
config.network.y = 200.0
config.network.z = 300.0
config.network.chunk_size = [100, 100, 100]
config.partitions.add("stellate_layer", thickness=100)
config.regions.add(
"brain_region",
type="stack",
children=["stellate_layer"],
)
config.morphologies = [
dict(
file="StellateCell.swc",
parser={
"tags": {
"16": ["dendrites", "proximal_dendrites"],
"17": ["dendrites", "distal_dendrites"],
"18": ["axon", "axon_initial_segment"],
}
},
)
]
config.cell_types.add(
"stellate_cell",
spatial=dict(
radius=4,
density=5e-6,
morphologies=["StellateCell"],
),
)
config.placement.add(
"stellate_placement",
strategy="bsb.placement.RandomPlacement",
cell_types=["stellate_cell"],
partitions=["stellate_layer"],
)
config.connectivity.add(
"stellate_to_stellate",
strategy="bsb.connectivity.VoxelIntersection",
presynaptic=dict(cell_types=["stellate_cell"], morphology_labels=["axon"]),
postsynaptic=dict(cell_types=["stellate_cell"], morphology_labels=["dendites"]),
)
Copy the configuration in you favorite format and put it in the project folder
as neuron-simulation.json
or as neuron-simulation.py
Then, the configuration should be compiled:
bsb compile --verbosity 3 neuron-simulation.json
# or
python neuron-simulation.py
Now we have to configure the simulation block.
Configuration of the simulation¶
We want here to see the postsynaptic response of our cells upon receiving an excitatory input. Each cell will receive one spike on their dendrites and we will check its effect on the postsynaptic current.
Let’s start by configuring the global simulation parameters: first of all, define a simulator; in our example, we are setting it to use NEURON. Then you need to define the resolution (the time step of the simulation in milliseconds), the duration (the total length of the simulation in milliseconds) and the temperature (celsius unit).
"simulations": {
"neuronsim": {
"simulator": "neuron",
"duration": 100,
"resolution": 0.025,
"temperature": 32,
config.simulations.add(
"neuronsim",
simulator="neuron",
resolution=0.025,
duration=100,
temperature=32,
Cell Models¶
For each cell type population in your network, you must assign a NEURON model to define the cell’s behavior.
In short, these models encapsulate all the specifications for ion channels and synapses
covering all compartments of the neuron. Discussing NEURON model characteristics is
beyond the scope of this guide; therefore, a ready-to-use Stellate model is provided
here
. Save it as a Stellate.py
file in your project folder and review its contents.
Within the model file, you will find a model definition called definitionStellate, which includes all the customized parameters. This is the object you will refer to in your configuration. Note also that the parameters for the ion channel mechanisms are in the attribute cable_types.
"cell_models": {
"stellate_cell": {
"model": "Stellate.definitionStellate",
"parameters": []
}
},
config.simulations["neuronsim"].cell_models = dict(
stellate_cell=dict(model="Stellate.definitionStellate", parameters=[])
)
Connection Models¶
For each connection type of your network, you also need to provide a NEURON model
describing its synapses’ dynamics. Similar to the cell_models block, for
each connection_model you should use a key that corresponds to a
ConnectivitySet
created during reconstruction (as explained in the previous
section).
In this example, to the stellate_to_stellate connection is assigned a
reference to one of the synapse_types, defined in the Stellate.py
model file: GABA.
"connection_models": {
"stellate_to_stellate":
{
"synapses": [{"synapse": "GABA", "weight": 0.001, "delay": 1}]
}
},
config.simulations["neuronsim"].connection_models = dict(
stellate_to_stellate=dict(
synapses=[
{
"synapse": "GABA",
"weight": 0.001,
"delay": 1,
}
]
)
)
To each synapse is assigned a weight of 0.001 and a delay (ms) of 1.
Devices¶
In the devices block, include all interfaces you wish to use for interacting with the network. These devices correspond typically to stimulators and measurement instruments.
Use the device key to select the type of device. We also introduce here the targetting concept for the devices: This configuration node allows you to filter elements of your neuron circuit to which you want to link your devices (see the targetting section on this page for more details).
"devices": {
"spike_generator": {
"device": "spike_generator",
"start": 9,
"number": 1,
"weight": 0.01,
"delay": 1,
"targetting": {
"strategy": "by_id",
"ids": {"stellate_cell": [0]}
},
"locations": {
"strategy": "branch",
"labels": ["dendrites"]
},
"synapses" : ["AMPA", "NMDA"]
},
"vrecorder": {
"device": "voltage_recorder",
"targetting": {
"strategy": "sphere",
"radius" : 100,
"origin" : [50, 100, 150],
"cell_models" : ["stellate_cell"]
}
},
"synapses_rec":{
"device": "synapse_recorder",
"synapse_types": ["AMPA", "NMDA", "GABA"],
"targetting": {
"strategy": "sphere",
"radius" : 100,
"origin" : [50, 100, 150],
"cell_models" : ["stellate_cell"]
},
"locations":{
"strategy": "branch",
"labels": ["dendrites"]
}
}
}
config.simulations["neuronsim"].devices = dict(
spike_generator=dict(
device="spike_generator",
start=9,
number=1,
interval=0,
noise=0,
delay=1,
weight=0.01,
targetting={"strategy": "by_id", "ids": {"stellate_cell": [0]}},
locations={"strategy": "branch", "labels": ["dendrites"]},
synapses=["AMPA", "NMDA"],
),
vrecorder=dict(
device="voltage_recorder",
targetting={
"strategy": "sphere",
"radius": 100,
"origin": [50, 100, 150],
"cell_models": ["stellate_cell"],
},
),
synapses_rec=dict(
device="synapse_recorder",
synapse_types=["AMPA", "NMDA"],
targetting={
"strategy": "sphere",
"radius": 100,
"origin": [50, 100, 150],
"cell_models": ["stellate_cell"],
},
locations={"strategy": "branch", "labels": ["dendrites"]},
),
)
In this example, a spike_generator is used to produce 1
spike (attribute
number) at 9
ms and send it to the cell with ID 0
(using the
targetting) after 1
ms of delay and a weight of 0.01
.
The stimulus targets the AMPA
and NMDA
(excitatory) synapses located on the dendrites
of the cell.
The membrane potential is recorded using a voltage_recorder, which collects the
signal from within a 100
µm radius sphere at the center of the circuit. Hence, not all cells
might be recorded.
Synapse activity is monitored with a synapse_recorder for all the synaptic types on the cell’s dendrites, within the same spherical region. Here too, not all synapses might be recorded.
Final configuration file¶
{
"name": "DBBS test stellate rand circuit v4.0",
"storage": {
"engine": "hdf5",
"root": "my_network.hdf5"
},
"network": {
"x": 100.0,
"y": 200.0,
"z": 300.0,
"chunk_size": [100, 100, 100]
},
"partitions": {
"stellate_layer": {
"thickness": 300.0
}
},
"regions": {
"example_cortex": {
"type": "stack",
"children": ["stellate_layer"]
}
},
"morphologies": [
{
"file": "StellateCell.swc",
"parser":{
"tags": {
16: ["dendrites", "proximal_dendrites"],
17: ["dendrites", "distal_dendrites"],
18: ["axon", "axon_initial_segment"]
}
}
}
],
"cell_types": {
"stellate_cell": {
"spatial": {
"radius": 4.0,
"density": 0.000005,
"morphologies": [
{
"names": ["StellateCell"]
}
]
}
}
},
"placement": {
"stellate_placement": {
"strategy": "bsb.placement.RandomPlacement",
"partitions": ["stellate_layer"],
"cell_types": ["stellate_cell"]
}
},
"connectivity": {
"stellate_to_stellate": {
"strategy": "bsb.connectivity.VoxelIntersection",
"presynaptic": {
"cell_types": ["stellate_cell"],
"morphology_labels" : ["axon"]
},
"postsynaptic": {
"cell_types": ["stellate_cell"],
"morphology_labels" : ["dendrites"]
}
}
},
"simulations": {
"neuronsim": {
"simulator": "neuron",
"duration": 100,
"resolution": 0.025,
"temperature": 32,
"cell_models": {
"stellate_cell": {
"model": "Stellate.definitionStellate",
"parameters": []
}
},
"connection_models": {
"stellate_to_stellate":
{
"synapses": [{"synapse": "GABA", "weight": 0.001, "delay": 1}]
}
},
"devices": {
"spike_generator": {
"device": "spike_generator",
"start": 9,
"number": 1,
"weight": 0.01,
"delay": 1,
"targetting": {
"strategy": "by_id",
"ids": {"stellate_cell": [0]}
},
"locations": {
"strategy": "branch",
"labels": ["dendrites"]
},
"synapses" : ["AMPA", "NMDA"]
},
"vrecorder": {
"device": "voltage_recorder",
"targetting": {
"strategy": "sphere",
"radius" : 100,
"origin" : [50, 100, 150],
"cell_models" : ["stellate_cell"]
}
},
"synapses_rec":{
"device": "synapse_recorder",
"synapse_types": ["AMPA", "NMDA", "GABA"],
"targetting": {
"strategy": "sphere",
"radius" : 100,
"origin" : [50, 100, 150],
"cell_models" : ["stellate_cell"]
},
"locations":{
"strategy": "branch",
"labels": ["dendrites"]
}
}
}
}
}
}
import bsb.options
from bsb import Configuration, Scaffold
bsb.options.verbosity = 3
config = Configuration.default(storage={"engine": "hdf5", "root": "my_network.hdf5"})
config.network.x = 100.0
config.network.y = 200.0
config.network.z = 300.0
config.network.chunk_size = [100, 100, 100]
config.partitions.add("stellate_layer", thickness=100)
config.regions.add(
"brain_region",
type="stack",
children=["stellate_layer"],
)
config.morphologies = [
dict(
file="StellateCell.swc",
parser={
"tags": {
"16": ["dendrites", "proximal_dendrites"],
"17": ["dendrites", "distal_dendrites"],
"18": ["axon", "axon_initial_segment"],
}
},
)
]
config.cell_types.add(
"stellate_cell",
spatial=dict(
radius=4,
density=5e-6,
morphologies=["StellateCell"],
),
)
config.placement.add(
"stellate_placement",
strategy="bsb.placement.RandomPlacement",
cell_types=["stellate_cell"],
partitions=["stellate_layer"],
)
config.connectivity.add(
"stellate_to_stellate",
strategy="bsb.connectivity.VoxelIntersection",
presynaptic=dict(cell_types=["stellate_cell"], morphology_labels=["axon"]),
postsynaptic=dict(cell_types=["stellate_cell"], morphology_labels=["dendites"]),
)
config.simulations.add(
"neuronsim",
simulator="neuron",
resolution=0.025,
duration=100,
temperature=32,
)
config.simulations["neuronsim"].cell_models = dict(
stellate_cell=dict(model="Stellate.definitionStellate", parameters=[])
)
config.simulations["neuronsim"].connection_models = dict(
stellate_to_stellate=dict(
synapses=[
{
"synapse": "GABA",
"weight": 0.001,
"delay": 1,
}
]
)
)
config.simulations["neuronsim"].devices = dict(
spike_generator=dict(
device="spike_generator",
start=9,
number=1,
interval=0,
noise=0,
delay=1,
weight=0.01,
targetting={"strategy": "by_id", "ids": {"stellate_cell": [0]}},
locations={"strategy": "branch", "labels": ["dendrites"]},
synapses=["AMPA", "NMDA"],
),
vrecorder=dict(
device="voltage_recorder",
targetting={
"strategy": "sphere",
"radius": 100,
"origin": [50, 100, 150],
"cell_models": ["stellate_cell"],
},
),
synapses_rec=dict(
device="synapse_recorder",
synapse_types=["AMPA", "NMDA"],
targetting={
"strategy": "sphere",
"radius": 100,
"origin": [50, 100, 150],
"cell_models": ["stellate_cell"],
},
locations={"strategy": "branch", "labels": ["dendrites"]},
),
)
scaffold = Scaffold(config)
scaffold.compile(clear=True)
Running the Simulation¶
Simulations are separated from the reconstruction pipeline (see the
top level guide),
which means you do not need to recompile your network to add a simulation to your stored Configuration.
In this example, we only modified the Configuration
in the simulations block but this updates were
not been saved in the network file.
So, you need to update your file, using either the reconfigure
command or the store_active_config
method.
bsb reconfigure my_network.hdf5 neuron-simulation.json
storage = scaffold.storage
storage.store_active_config(config)
Once this is done, create a folder in which to store your simulation results:
mkdir simulation-results
You can now run your simulation:
bsb simulate my_network.hdf5 neuronsim -o simulation-results
from bsb import from_storage
scaffold = from_storage("my_network.hdf5")
result = scaffold.run_simulation("neuronsim")
result.write("simulation-results/neuronsimulation.nio", "ow")
The results of the simulation will be stored in the "simulation-results"
folder.
Note
If you run the simulation with the command line interface, the name of the output nio file is randomized by BSB.
For more detailed information about simulation modules, please refer to the simulation section.
Congratulations, you simulated your first BSB reconstructed network with NEURON!
Next steps: